Skip to main content
Log in

On vanishing of Kronecker coefficients

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood–Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood–Richardson coefficients, unless P = NP.

We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics.

Finally, we consider the existence of the partition triples \({(\lambda, \mu, \pi)}\) such that the Kronecker coefficient \({k^\lambda_{\mu, \pi} = 0}\) but the Kronecker coefficient \({k^{l\lambda}_{l \mu, l \pi} > 0}\) for some integer l > 1. Such “holes” are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any \({0 < \epsilon \leq 1}\), there exists \({0 < a < 1}\) such that, for all m, there exist \({\Omega(2^{m^a})}\) partition triples \({(\lambda,\mu,\mu)}\) in the Kronecker cone such that: (a) the Kronecker coefficient \({k^\lambda_{\mu,\mu}}\) is zero, (b) the height of \({\mu}\) is m, (c) the height of \({\lambda}\) is \({\leq m^\epsilon}\), and (d) \({|\lambda|=|\mu| \le m^3}\). The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. Baldoni, M. Vergne & M. Walter (2017). Computation of Dilated Kronecker Coefficients. To appear in Journal of Symbolic Computation.

  • Berenstein A., Sjamaar R. (2000) Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion. Journal of the AMS 13(2): 433–466

    MATH  MathSciNet  Google Scholar 

  • Berman L., Hartmanis J. (1977) On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing 6: 305–322

    Article  MATH  MathSciNet  Google Scholar 

  • J. Blasiak (2017). Kronecker coefficients for one hook shape. Seminaire Lotharingien de Combinatoire 77.

  • J. Blasiak, K. Mulmuley & M. Sohoni (2015). Geometric complexity theory IV: nonstandard quantum group for the Kronecker problem. Memoirs of the AMS 235(1109).

  • S. Brunetti, A. Del Lungo & Y. Gerard (2001). On the computational complexity of reconstructing three-dimensional lattice sets from their two-dimensional X-rays. Linear Algebra and its Applications 339(1), 59–73.

  • S. Brunetti, A. Del Lungo, P. Gritzmann & S. de Vries (2008). On the reconstruction of binary and permutation matrices under (binary) tomographic constraints. Theoretical Computer Science 406, 63–71.

  • Bürgisser P., Christandl M., Ikenmeyer C. (2011a) Nonvanishing of Kronecker coefficients for rectangular shapes. Advances in Mathematics 227(5): 2082–2091

    Article  MATH  MathSciNet  Google Scholar 

  • Bürgisser P., Christandl M., Mulmuley K., Walter M. (2017) Membership in Moment Polytopes is in NP and coNP. SIAM Journal on Computing 46(3): 972–991

    Article  MATH  MathSciNet  Google Scholar 

  • P. Bürgisser & C. Ikenmeyer (2013). Explicit lower bounds via geometric complexity theory. In Proceedings of the 44th STOC, 141–150. ACM.

  • Bürgisser P., Landsberg J., Manivel L., Weyman J. (2011b) An overview of mathematical issues arising in the geometric complexity theory approach to \({VP \not = VNP}\). SIAM Journal on Computing 40(4): 1179–1209

    Article  MATH  MathSciNet  Google Scholar 

  • Peter Bürgisser (2016). Permanent versus determinant, obstructions, and Kronecker coefficients. Seminaire Lotharingien de Combinatoire 75.

  • M. Christandl, B. Doran & M. Walter (2012). Computing Multiplicities of Lie Group Representations. In Proceedings of the 53rd FOCS, 639–648.

  • Derksen H., Weyman J. (2000) Semi-invariants of quivers and saturation for Littlewood–Richardson coefficients. Journal of Applied and Computational Mathematics 13(3): 467–479

    MATH  MathSciNet  Google Scholar 

  • Fortune S. (1979) A note on sparse complete sets. SIAM Journal on Computing 8(3): 431–433

    Article  MATH  MathSciNet  Google Scholar 

  • W. Fulton & J. Harris (1991). Representation theory: A first course. Springer.

  • M. Garey & D. Johnson (1979). Computers and Intractability. W. H. Freeman and company, New York.

  • C. Ikenmeyer (2012). Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients. Ph.D. thesis, Institute of Mathematics, University of Paderborn. Online available at http://nbn-resolving.de/urn:nbn:de:hbz:466:2-10472.

  • Christian Ikenmeyer & Greta Panova (2016). Rectangular Kronecker coefficients and plethysms in geometric complexity theory. In Proceedings of the 57th FOCS, 396–405. IEEE.

  • Kadish H., Landsberg J. (2014) Padded polynomials, their cousins, and geometric complexity theory. Communications in Algebra 42(5): 2171–2180

    Article  MATH  MathSciNet  Google Scholar 

  • R. Karp (1972). Reducibility among combinatorial problems. Complexity of Computer Computations 85–103.

  • Kirwan F. (1984) Convexity properties of the moment mapping, III. Invent. Math. 77: 547–552

    Article  MATH  MathSciNet  Google Scholar 

  • A. Klyachko (2004). Quantum marginal problem and representations of the symmetric group. arXiv:quant-ph/0409113.

  • Knutson A., Tao T. (1999) The Honeycomb model of \({GL_n(\mathbb{C})}\) tensor products I: proof of the saturation conjecture. Journal of the AMS 12: 1055–1090

    MATH  Google Scholar 

  • Knutson A., Tao T. (2001) Honeycombs and sums of Hermitian matrices. Notices of the AMS 48: 175–186

    MATH  MathSciNet  Google Scholar 

  • Kumar S. (2015) A study of the representations supported by the orbit closure of the determinant. Compositio Mathematica 151: 292–312

    Article  MATH  MathSciNet  Google Scholar 

  • Mahaney S. (1982) Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis. Journal of Computer and System Sciences 25: 130–143

    Article  MATH  MathSciNet  Google Scholar 

  • L. Manivel (1997). Applications de Gauss et pléthysme. In Annales de l’institut Fourier, volume 47, 715–774. Chartres: L’Institut, 1950-.

  • K. Mulmuley (2010a). Explicit proofs and the flip. arXiv:1009.0246.

  • K. Mulmuley (2010b). Geometric complexity theory VI: the flip via positivity. Technical report, Computer Science Department, the University of Chicago.

  • K. Mulmuley (2011). On P vs. NP and geometric complexity theory. Journal of the ACM 58(2).

  • K. Mulmuley, H. Narayanan & M. Sohoni (2011). Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient. Journal of Algebraic Combinatorics 1–8.

  • Mulmuley K., Sohoni M. (2008) Geometric complexity theory II: toward explicit obstructions for embeddings among class varieties. SIAM Journal on Computing 38(3): 1175–1206

    Article  MATH  MathSciNet  Google Scholar 

  • Murnaghan F. (1938) The analysis of the Kronecker product of irreducible representations of the symmetric group. American Journal of Mathematics 60(3): 761–784

    Article  MATH  MathSciNet  Google Scholar 

  • Ressayre N. (2010) Geometric invariant theory and the generalized eigenvalue problem. Inventiones mathematicae 180: 389–441

    Article  MATH  MathSciNet  Google Scholar 

  • R. Stanley (2002). Positivity problems and conjectures in algebraic combinatorics. In Mathematics: Frontiers and Perspectives 295–319.

  • Vallejo E. (2000) Plane partitions and characters of the symmetric group. Journal of Algebraic Combinatorics 11(1): 79–88

    Article  MATH  MathSciNet  Google Scholar 

  • Michèle Vergne & Michael Walter (2017). Inequalities for Moment Cones of Finite-Dimensional Representations. To appear in Journal of Symplectic Geometry.

  • M. Walter (2014). Multipartite Quantum States and their Marginals. Ph.D. thesis, ETH Zurich. arXiv:1410.6820.

  • W. Yu (1996). The two-machine flow shop problem with delays and the one-machine total tardiness. Ph.D. thesis, Eindhoven University of Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan D. Mulmuley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikenmeyer, C., Mulmuley, K.D. & Walter, M. On vanishing of Kronecker coefficients. comput. complex. 26, 949–992 (2017). https://doi.org/10.1007/s00037-017-0158-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-017-0158-y

Keywords

Subject classification

Navigation