Skip to main content
Log in

Holographic reduction, interpolation and hardness

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We introduce the method of proving complexity dichotomy theorems by holographic reductions. Combined with interpolation, we present a unified strategy to prove #P-hardness. Specifically, we prove a complexity dichotomy theorem for a class of counting problems on 2–3 regular graphs expressible by Boolean signatures. For these problems, whenever a holographic reduction followed by interpolation fails to prove #P-hardness, we can show that the problem is solvable in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrei A. Bulatov (2008). The Complexity of the Counting Constraint Satisfaction Problem. In ICALP (1), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz, editors, volume 5125 of Lecture Notes in Computer Science, 646–661. Springer. ISBN 978-3-540-70574-1.

  • Bulatov Andrei A., Victor Dalmau (2007) Towards a dichotomy theorem for the counting constraint satisfaction problem. Information and Computation 205(5): 651–678

    Article  MathSciNet  MATH  Google Scholar 

  • Bulatov Andrei A., Martin Grohe (2005) The complexity of partition functions. Theor. Comput. Sci. 348(2-3): 148–186

    Article  MATH  Google Scholar 

  • Jin-Yi Cai, Xi Chen & Pinyan Lu (2011a). Non-negatively Weighted #CSP: An Effective Complexity Dichotomy. In IEEE Conference on Computational Complexity, 45–54. IEEE Computer Society.

  • Cai Jin-Yi, Vinay Choudhary (2007) Valiant’s Holant Theorem and matchgate tensors. Theor. Comput. Sci. 384(1): 22–32

    Article  MATH  Google Scholar 

  • Jin-Yi Cai, Sangxia Huang & Pinyan Lu (2010a). From Holant to #CSP and Back: Dichotomy for Holantc Problems. In ISAAC (1), Otfried Cheong, Kyung-Yong Chwa & Kunsoo Park, editors, volume 6506 of Lecture Notes in Computer Science, 253–265. Springer. ISBN 978-3-642-17516-9.

  • Jin-Yi Cai & Michael Kowalczyk (2010). A Dichotomy for k-Regular Graphs with {0, 1}-Vertex Assignments and Real Edge Functions. In TAMC, Jan Kratochvíl, Angsheng Li, Jirí Fiala & Petr Kolman, editors, volume 6108 of Lecture Notes in Computer Science, 328–339. Springer. ISBN 978-3-642-13561-3.

  • Jin-Yi Cai & Michael Kowalczyk (2012). Spin systems on k-regular graphs with complex edge functions. Theoretical Computer Science.

  • Cai Jin-Yi, Pinyan Lu (2010) On Symmetric Signatures in Holographic Algorithms. Theory Comput. Syst. 46(3): 398–415

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Jin-Yi, Pinyan Lu (2011) Holographic algorithms: From art to science. J. Comput. Syst. Sci. 77(1): 41–61

    Article  MATH  Google Scholar 

  • Jin-Yi Cai, Pinyan Lu & Mingji Xia (2008). Holographic Algorithms by Fibonacci Gates and Holographic Reductions for Hardness. In FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society, Washington, DC, USA.

  • Jin-Yi Cai, Pinyan Lu & Mingji Xia (2009). Holant problems and counting CSP. In STOC, Michael Mitzenmacher, editor, 715–724. ACM. ISBN 978-1-60558-506-2.

  • Jin-Yi Cai, Pinyan Lu & Mingji Xia (2010b). Holographic Algorithms with Matchgates Capture Precisely Tractable Planar #CSP. In FOCS, 427–436. IEEE Computer Society. ISBN 978-0-7695-4244-7.

  • Cai Jin-Yi, Pinyan Lu, Xia Mingji (2011) Computational Complexity of Holant Problems. SIAM J. Comput. 40(4): 1101–1132

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Jin-Yi, Pinyan Lu, Xia Mingji (2011) A computational proof of complexity of some restricted counting problems. Theor. Comput. Sci. 412(23): 2468–2485

    Article  MATH  Google Scholar 

  • Jin-Yi Cai, Pinyan Lu & Mingji Xia (2011d). Holographic algorithms by Fibonacci gates. Linear Algebra and its Applications.

  • Dagum Paul, Michael Luby (1992) Approximating the permanent of graphs with large factors. Theor. Comput. Sci. 102: 283–305

    Article  MATH  Google Scholar 

  • Dodson Christopher T.J., Timothy Poston (1991) Tensor Geometry. Graduate Texts in Mathematics 130. Springer-Verlag, New York

    Google Scholar 

  • Martin E. Dyer, Leslie Ann Goldberg & Mike Paterson (2007). On counting homomorphisms to directed acyclic graphs. J. ACM 54(6).

  • Dyer Martin E., Greenhill Catherine S. (2000) The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3-4): 260–289

    Article  MathSciNet  MATH  Google Scholar 

  • Martin E. Dyer & David Richerby (2010). On the complexity of #CSP. In Proceedings of the 42nd ACM symposium on Theory of computing, 725–734.

  • Greenhill Catherine S. (2000) The complexity of counting colourings and independent sets in sparse graphs and hypergraphs. Computational Complexity 9(1): 52–72

    Article  MathSciNet  MATH  Google Scholar 

  • Jerrum Mark (1987) Two-dimensional monomer-dimer systems are computationally intractable. Journal of Statistical Physics 48: 121–134

    Article  MathSciNet  Google Scholar 

  • Kasteleyn P.W. (1961) The statistics of dimers on a lattice. Physica 27: 1209–1225

    Article  MATH  Google Scholar 

  • Michael Kowalczyk & Jin-Yi Cai (2010). Holant Problems for Regular Graphs with Complex Edge Functions. In STACS, Jean-Yves Marion & Thomas Schwentick, editors, volume 5 of LIPIcs, 525–536. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-16-3.

  • H. N. V. Temperley & M. E. Fisher (1961). Dimer problem in statistical mechanics C an Exact Result. Philosophical Magazine 6, 1061C 1063.

    Google Scholar 

  • Vadhan Salil P. (2001) The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM J. Comput. 31(2): 398–427

    Article  MathSciNet  MATH  Google Scholar 

  • Valiant Leslie G. (1979) The Complexity of Computing the Permanent. Theor. Comput. Sci. 8: 189–201

    Article  MathSciNet  MATH  Google Scholar 

  • Valiant Leslie G. (1979) The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 8(3): 410–421

    Article  MathSciNet  MATH  Google Scholar 

  • Leslie G. Valiant (2006). Accidental Algorithms. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, 509–517. IEEE Computer Society, Washington, DC, USA.

  • Valiant LeslieG. (2008) Holographic Algorithms. SIAM J. Comput. 37(5): 1565–1594

    Article  MathSciNet  MATH  Google Scholar 

  • Xia Mingji, Peng Zhang, Zhao Wenbo (2007) Computational complexity of counting problems on 3-regular planar graphs. Theor. Comput. Sci. 384(1): 111–125

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yi Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, JY., Lu, P. & Xia, M. Holographic reduction, interpolation and hardness. comput. complex. 21, 573–604 (2012). https://doi.org/10.1007/s00037-012-0044-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-012-0044-6

Keywords

Subject classification

Navigation