Skip to main content
Log in

Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

While it is well known that the success of alien plants in new environments greatly depends on their functional traits, to date only a few other studies have tested whether coexisting alien and native species show converging or diverging functional attributes. To our knowledge, no comparative analysis between native and alien species has been carried out in the same mountain habitats. We characterized the main habitats of the Italian Alps on the basis of plant species traits and we then tested for evidence of functional axes of variation among the habitats for native and alien plants. Finally, we tested the ‘try-harder’ and the ‘join-the-locals’ hypotheses to understand whether coexisting native and alien plant species showed converging or diverging functional attributes. Ordination analysis showed a distribution of the habitats according to the Grime’s CSR strategies, and associated to plant growth form and resource acquisition. Co-inertia analysis showed a significant association between native and alien plant traits at habitat level (RV = 0.73; Monte-Carlo test, p = 0.035). Across all species and habitats, the comparative analysis of individual traits showed that alien species have 25% higher plant height, 250% higher leaf mass, 19% lower leaf dry matter content, 10% higher SLA, and 17% longer flowering duration than native species. Overall, our findings demonstrated that aliens differ in many traits from native species in the Italian Alps, but that many of these differences disappear when one compares aliens and natives that co-occur in the same types of habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145

    Article  PubMed  CAS  Google Scholar 

  • Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina. Zanichelli, Bologna

    Google Scholar 

  • Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Bragazza L (2009) Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers Conserv 18:2823–2835

    Article  Google Scholar 

  • Celesti-Grapow L, Alessandrini A, Arrigoni PV, Banfi E, Bernardo L, Bovio M, Brundu G, Cagiotti MR, Camarda I, Carli E, Conti F, Fascetti S, Galasso G, Gubellini L, La Valva V, Lucchese F, Marchiori S, Mazzola P, Peccenini S, Poldini L, Pretto F, Prosser F, Siniscalco C, Villani MC, Viegi L, Wilhalm T, Blasi C (2009) Inventory of the non-native flora of Italy. Plant Biosyst 143:386–430

    Article  Google Scholar 

  • Chytry M, Jarosik V, Pyšek P, Hajek O, Knollova I, Tichy L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    Article  PubMed  Google Scholar 

  • Chytry M, Pyšek P, Wild J, Pino J, Maskell LC, Vila M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib 15:98–107

    Article  Google Scholar 

  • Cingolani AM, Cabido M, Gurvich DE, Renison D, Diaz S (2007) Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? J Veg Sci 18:911–920

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 34:277–294

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20

    Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Duncan RP, Williams PA (2002) Ecology—Darwin’s naturalization hypothesis challenged. Nature 417:608–609

    Article  PubMed  CAS  Google Scholar 

  • European Commission E (2003) Alpine region: reference list of habitats and species present in the region. Doc. Alp/B/Fin. 10

  • Fitter AH, Peat HJ (1994) The ecological flora database. J Ecol 82:415–425

    Article  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260

    Article  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongeren OFR (1987) Data analysis in community and landscape ecology. Pudoc, Wageningen

    Google Scholar 

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schr Reihe Vegeta 38:1–334

    Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  PubMed  Google Scholar 

  • Lavorel S, Gachet S, Sahl A, Colace MP, Gaucherand S, Burylo M, Bonet R (2010) A plant functional traits data base for the Alps—application to the understanding of functional effects of changed grassland management. In: Korner C, Sphen EM (eds) Data mining for global trends in mountain biodiversity. CRC Press, New York, pp 107–123

    Google Scholar 

  • Liu K, Eastwood RJ, Flynn S, Turner RM, Stuppy WH (2008) Seed information database, release 7.1, May 2008. http://www.kew.org/data/sid

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Lososova Z, Chytry M, Kuhn I, Hajek O, Horakova V, Pyšek P, Tichy L (2006) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol Syst 8:69–81

    Article  Google Scholar 

  • Lososova Z, Chytry M, Kuhn I (2008) Plant attributes determining the regional abundance of weeds on central European arable land. J Biogeogr 35:177–187

    Google Scholar 

  • Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Marini L, Gaston KJ, Prosser F, Hulme PE (2009) Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Glob Ecol Biogeogr 18:652–661

    Article  Google Scholar 

  • McDougall KL, Morgan JW, Walsh NG, Williams RJ (2005) Plant invasions in treeless vegetation of the Australian Alps. Perspect Plant Ecol Evol Syst 7:159–171

    Article  Google Scholar 

  • McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111

    Article  Google Scholar 

  • Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Proc R I Acad 106:335–341

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.18-23/r1497. http://R-Forge.R-project.org/projects/vegan/

  • Ordonez A, Wright IJ, Olff H (2010) Functional differences between native and alien species: a global-scale comparison. Funct Ecol 24:1353–1361

    Article  Google Scholar 

  • Pakeman RJ (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J Ecol 92:893–905

    Article  Google Scholar 

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arevalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486

    Article  Google Scholar 

  • Pedrotti F, Gafta D (2003) The high mountain flora and vegetation of the Apennines and the Italian Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Heidelberg, pp 73–84

    Google Scholar 

  • Pyšek P, Jarosik V, Kucera T (2002) Patterns of invasion in temperate nature reserves. Biol Conserv 104:13–24

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Rejmanek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143

    Article  Google Scholar 

  • Pyšek P, Jarosik V, Pergl J, Wild J (2011) Colonization of high altitudes by alien plants over the last two centuries. Proc Natl Acad Sci USA 108:39–440

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C (1998) Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol 12:337–338

    Google Scholar 

  • Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: Van der Maarel E (ed) Vegetation ecology. Blackwell Science, Oxford, pp 332–355

    Google Scholar 

  • Schamp BS, Chau J, Aarssen LW (2008) Dispersion of traits related to competitive ability in an old-field plant community. J Ecol 96:204–212

    Google Scholar 

  • Smith MD, Knapp AK (2001) Physiological and morphological traits of exotic, invasive exotic, and native plant species in tallgrass prairie. Int J Plant Sci 162:785–792

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567

    Article  Google Scholar 

  • Tecco PA, Diaz S, Cabido M, Urcelay C (2010) Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J Ecol 98:17–27

    Article  Google Scholar 

  • Theurillat JP, Aeschimann D, Kupfer P, Spichiger R (1995) The higher vegetation units of the Alps. Colloq Phytosociol 23:189–239

    Google Scholar 

  • Thompson K, McCarthy MA (2008) Traits of British alien and native urban plants. J Ecol 96:853–859

    Article  Google Scholar 

  • Thompson K, Hodgson JG, Rich TCG (1995) Native and alien invasive plants: more of the same? Ecography 18:390–402

    Article  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Vila M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42

    Article  Google Scholar 

  • Walter J, Essl F, Englisch T, Kiehn M (2005) Aliens in Austria: habitat preferences and ecological effects. Neobiota 6:13–25

    Google Scholar 

  • Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett 13:267–283

    Article  PubMed  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jennifer D. Welch for the linguistic revision of the text. We are grateful to Jürg Stöcklin and two anonymous referees for the insightful comments which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Dainese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dainese, M., Bragazza, L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alp Botany 122, 11–21 (2012). https://doi.org/10.1007/s00035-012-0101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-012-0101-4

Keywords

Navigation