Skip to main content
Log in

Kernel Generalized Half-Quadratic Correntropy Conjugate Gradient Algorithm for Online Prediction of Chaotic Time Series

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Kernel adaptive filter armed with information theoretic learning has gained popularity in the domain of time series online prediction. In particular, the generalized correntropy criterion (GCC), as a nonlinear similarity measure, is robust to non-Gaussian noise or outliers in time series. However, due to the nonconvex nature of GCC, optimal parameter estimation may be difficult. Therefore, this paper deliberately combines it with half-quadratic (HQ) optimization to generate the generalized HQ correntropy (GHC) criterion, which provides reliable calculations for convex optimization. After that, a novel adaptive algorithm called kernel generalized half-quadratic correntropy conjugate gradient (KGHCG) algorithm is designed by integrating GHC and the conjugate gradient method. The proposed approach effectively enhances the robustness of non-Gaussian noise and greatly improves the convergence speed and filtering accuracy, and its sparse version KGHCG-VP limits the dimension of the kernel matrix through vector projection, which successfully handles the bottleneck of high computational complexity. In addition, we also discuss the convergence properties, computational complexity and memory requirements in terms of theoretical analysis. Finally, online prediction simulation results with the benchmark Mackey–Glass chaotic time series and real-world datasets show that KGHCG and KGHCG-VP have better convergence and prediction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

he datasets used to support the findings of this study are available from the corresponding author on reasonable request.

References

  1. F. Albu, K. Nishikawa, The kernel proportionate NLMS algorithm, in 21st European Signal Processing Conference (EUSIPCO 2013) (IEEE, 2013), pp. 1–5

  2. F. Albu, K. Nishikawa, A fixed budget implementation of a new variable step size kernel proportionate NLMS algorithm, in 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014) (IEEE, 2014), pp. 890–894

  3. F. Albu, K. Nishikawa, New iterative kernel algorithms for nonlinear acoustic echo cancellation, in 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (IEEE, 2015), pp. 734–739

  4. F. Albu, K. Nishikawa, Low complexity kernel affine projection-type algorithms with a coherence criterion, in 2017 International Conference on Signals and Systems (ICSigSys) (IEEE, 2017), pp. 87–91

  5. P.S. Chang, A.N. Willson, Analysis of conjugate gradient algorithms for adaptive filtering. IEEE Trans. Signal Process. 48(2), 409–418 (2000)

    Article  MATH  Google Scholar 

  6. B. Chen, L. Xing, H. Zhao, N. Zheng, J.C. Prı et al., Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Dassios, Analytic loss minimization: theoretical framework of a second order optimization method. Symmetry 11(2), 136 (2019)

    Article  MATH  Google Scholar 

  8. I. Dassios, D. Baleanu, Optimal solutions for singular linear systems of caputo fractional differential equations. Math. Methods Appl. Sci. 44(10), 7884–7896 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Dassios, K. Fountoulakis, J. Gondzio, A preconditioner for a primal-dual newton conjugate gradient method for compressed sensing problems. SIAM J. Sci. Comput. 37(6), A2783–A2812 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Engel, S. Mannor, R. Meir, The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Garcia-Vega, X. Zeng, J. Keane, Stock returns prediction using kernel adaptive filtering within a stock market interdependence approach. Expert Syst. Appl. 160, 113668 (2020)

    Article  Google Scholar 

  12. Y. He, F. Wang, Y. Li, J. Qin, B. Chen, Robust matrix completion via maximum correntropy criterion and half-quadratic optimization. IEEE Trans. Signal Process. 68, 181–195 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.R. Heravi, G.A. Hodtani, A new information theoretic relation between minimum error entropy and maximum correntropy. IEEE Signal Process. Lett. 25(7), 921–925 (2018)

    Article  Google Scholar 

  14. F. Huang, J. Zhang, S. Zhang, Maximum versoria criterion-based robust adaptive filtering algorithm. IEEE Trans. Circuits Syst. II Express Briefs 64(10), 1252–1256 (2017)

    Google Scholar 

  15. A. Khalili, A. Rastegarnia, M.K. Islam, T.Y. Rezaii, Steady-state tracking analysis of adaptive filter with maximum correntropy criterion. Circuits Syst. Signal Process. 36(4), 1725–1734 (2017)

    Article  MATH  Google Scholar 

  16. M.K. Khandani, W.B. Mikhael, Effect of sparse representation of time series data on learning rate of time-delay neural networks. Circuits Syst. Signal Process. 40(4), 1–26 (2021)

    Google Scholar 

  17. D. Li, M. Han, J. Wang, Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 787–799 (2012)

    Article  Google Scholar 

  18. D. Liu, H. Zhao, X. He, L. Zhou, Polynomial constraint generalized maximum correntropy normalized subband adaptive filter algorithm. Circuits Syst. Signal Process. 41, 1–18 (2021)

    Google Scholar 

  19. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Liu, P.P. Pokharel, J.C. Principe, The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56(2), 543–554 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Liu, J.C. Principe, S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction (Wiley, New York, 2011)

    Google Scholar 

  22. X. Liu, C. Song, Z. Pang, Kernel recursive maximum correntropy with variable center. Signal Process. 191, 108364 (2022)

    Article  Google Scholar 

  23. V.J. Mathews, S.H. Cho, Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Trans. Acoust. Speech Signal Process. 35(4), 450–454 (1987)

    Article  MATH  Google Scholar 

  24. C.C. Paige, M.A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. (TOMS) 8(1), 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Ramadevi, K. Bingi, Chaotic time series forecasting approaches using machine learning techniques: a review. Symmetry 14(5), 955 (2022)

    Article  Google Scholar 

  26. C. Richard, J.C.M. Bermudez, P. Honeine, Online prediction of time series data with kernels. IEEE Trans. Signal Process. 57(3), 1058–1067 (2008)

    Article  MATH  Google Scholar 

  27. S. Ruder, An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  28. S. Sankar, A. Kar, S. Burra, M. Swamy, V. Mladenovic, Nonlinear acoustic echo cancellation with kernelized adaptive filters. Appl. Acoust. 166, 107329 (2020)

    Article  Google Scholar 

  29. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)

    Article  Google Scholar 

  30. T. Shen, W. Ren, M. Han, Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction. Eng. Appl. Artif. Intell. 95, 103797 (2020)

    Article  Google Scholar 

  31. F. Tan, X. Guan, Research progress on intelligent system ’s learning, optimization, and control—part II: online sparse kernel adaptive algorithm. IEEE Trans. Syst. Man Cybern. Syst. 50(12), 5369–5385 (2020)

    Article  Google Scholar 

  32. G.K. Vallis, El niño: A chaotic dynamical system? Science 232(4747), 243–245 (1986)

    Article  Google Scholar 

  33. H. Wang, X. Li, D. Bi, X. Xie, Y. Xie, A robust student’s t-based kernel adaptive filter. IEEE Trans. Circuits Syst. II Express Briefs 68(10), 3371–3375 (2021)

    Google Scholar 

  34. W. Wang, H. Zhao, B. Chen, Robust adaptive volterra filter under maximum correntropy criteria in impulsive environments. Circuits Syst. Signal Process. 36(10), 4097–4117 (2017)

    Article  MATH  Google Scholar 

  35. Z. Wu, J. Shi, X. Zhang, W. Ma, B. Chen, I. Senior Member, Kernel recursive maximum correntropy. Signal Process. 117, 11–16 (2015)

    Article  Google Scholar 

  36. K. Xiong, H.H. Iu, S. Wang, Kernel correntropy conjugate gradient algorithms based on half-quadratic optimization. IEEE Trans. Cybern. 51(11), 5497–5510 (2020)

    Article  Google Scholar 

  37. M. Zhang, X. Wang, X. Chen, A. Zhang, The kernel conjugate gradient algorithms. IEEE Trans. Signal Process. 66(16), 4377–4387 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Zhao, W. Ren, M. Han, Adaptive sparse quantization kernel least mean square algorithm for online prediction of chaotic time series. Circuits Syst. Signal Process. 40(9), 4346–4369 (2021)

    Article  Google Scholar 

  39. J. Zhao, H. Zhang, Kernel recursive generalized maximum correntropy. IEEE Signal Process. Lett. 24(12), 1832–1836 (2017)

    Article  MathSciNet  Google Scholar 

  40. J. Zhao, H. Zhang, G. Wang, Projected kernel recursive maximum correntropy. IEEE Trans. Circuits Syst. II Express Briefs 65(7), 963–967 (2018)

    Google Scholar 

  41. K. Zhong, J. Ma, M. Han, Online prediction of noisy time series: dynamic adaptive sparse kernel recursive least squares from sparse and adaptive tracking perspective. Eng. Appl. Artif. Intell. 91, 103547 (2020)

    Article  Google Scholar 

  42. G. Zoutendijk, Nonlinear programming, computational methods, in Integer & Nonlinear Programming (1970), pp. 37–86

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62173063).

Funding

This work was supported by the National Natural Science Foundation of China (62173063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Ren, W. & Han, M. Kernel Generalized Half-Quadratic Correntropy Conjugate Gradient Algorithm for Online Prediction of Chaotic Time Series. Circuits Syst Signal Process 42, 2698–2722 (2023). https://doi.org/10.1007/s00034-022-02258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02258-2

Keywords

Navigation