Skip to main content
Log in

Local Information-Driven Intuitionistic Fuzzy C-Means Algorithm Integrating Total Bregman Divergence and Kernel Metric for Noisy Image Segmentation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To improve the segmentation performance and anti-noise robustness of existing weighted kernel intuitionistic fuzzy clustering, a robust kernelized total Bregman divergence-based fuzzy local information clustering motivated by intuitionistic fuzzy information is proposed. In this algorithm, a kernelized total Bregman divergence is extended by a polynomial kernel function, and the corresponding intuitionistic kernelized total Bregman divergence is put forward to measure the difference between intuitionistic fuzzy sets. Then, the weighted local information is introduced into the objective function of intuitionistic fuzzy clustering, and the similarity between the current pixel and its neighborhood pixels is constructed to better describe the influence of neighborhood pixels on the current pixel. Finally, the square root of the deviation between the current pixel and the mean value of its neighboring pixels is used to adjust the local spatial information to improve the robustness to noise or outliers and further enhance the anti-noise ability of the algorithm. Experimental results show that the proposed algorithm has better clustering performance and stronger anti-noise robustness than existing state-of-the-art fuzzy clustering-related algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The MR brain images generated and analyzed during this study are available in the Kaggle brain tumor dataset: https://www.kaggle.com/hasimdev/brain-mri-dataset. The natural images generated and analysed during this study are available in the Berkeley Segmentation Dataset: https://doi.org/10.1109/ICCV.2001.937655. The remote sensing images generated and analysed during this study are available in the UC Merced Land Use dataset: http://vision.ucmerced.edu/datasets/landuse.html and NWPU-RESISC45: http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html.

References

  1. M.N. Ahmed, S.M. Yamany, N. Mohamed et al., A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002). https://doi.org/10.1109/42.996338

    Article  Google Scholar 

  2. S. Alipour, J. Shanbehzadeh, Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method. Mach. Vis. Appl. 25(6), 1469–1488 (2014). https://doi.org/10.1007/s00138-014-0606-5

    Article  Google Scholar 

  3. J. Arora, M. Tushir, A new semi-supervised intuitionistic fuzzy c-means clustering. ICST Trans. Scalable Inf. Syst. 7(24), 159622 (2019). https://doi.org/10.4108/eai.13-7-2018.159622

    Article  Google Scholar 

  4. M.A. Balafar, A.R. Ramli, M.I. Saripan, S. Mashohor, Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33(3), 261–274 (2010). https://doi.org/10.1007/s10462-010-9155-0

    Article  Google Scholar 

  5. A. Banerjee, S. Merugu, I.S. Dhillon et al., Clustering with Bregman divergences. J. Mach. Learn. Res. 6(4), 1705–1749 (2005). https://doi.org/10.1137/1.9781611972740.22

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. Bezdek, Pattern recognition with fuzzy objective function algorithms (Kluwer Academic Publishers, Dordrecht, 1981). https://doi.org/10.1007/978-1-4757-0450-1

    Book  MATH  Google Scholar 

  7. J.C. Bezdek, Cluster validity with fuzzy sets. J. Cybern. 3(3), 58–73 (1974). https://doi.org/10.1080/01969727308546047

    Article  MathSciNet  MATH  Google Scholar 

  8. L.M. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967). https://doi.org/10.1016/0041-5553(67)90040-7

    Article  MathSciNet  Google Scholar 

  9. W. Cai, S. Chen, D. Zhang, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007). https://doi.org/10.1016/j.patcog.2006.07.011

    Article  MATH  Google Scholar 

  10. T. Chaira, A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images. Appl. Soft Comput. 11(2), 1711–1717 (2011). https://doi.org/10.1016/j.asoc.2010.05.005

    Article  Google Scholar 

  11. T. Chaira, A. Panwar, An Atanassov’s intuitionistic fuzzy kernel clustering for medical image segmentation. Int. J. Comput. Intell. Syst. 7(2), 360–370 (2014). https://doi.org/10.1080/18756891.2013.865830

    Article  Google Scholar 

  12. S.V. Carata, V.E. Neagoe, A pulse-coupled neural network approach for image segmentation and its pattern recognition application, in 2016 International Conference on Communications (COMM) (IEEE, 2016). https://doi.org/10.1109/ICComm.2016.7528317

  13. L. Chen, C. Chen, M. Lu, A multiple-kernel fuzzy C-means algorithm for image segmentation. IEEE Trans. Syst. Man Cybern. B Cybern. 41(5), 1263–1274 (2011). https://doi.org/10.1109/TSMCB.2011.2124455

    Article  Google Scholar 

  14. X. Chen, B.P. Nguyen, C.K. Chui, S.H. Ong, Automated brain tumor segmentation using kernel dictionary learning and superpixel-level features, in IEEE International Conference on Systems, man, and cybernetics (SMC), (IEEE, 2017), pp. 002,547–002,552 (2017). https://doi.org/10.1109/SMC.2016.7844622

  15. S. Chen, D. Zhang, Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. 34(4), 1907–1916 (2004). https://doi.org/10.1109/TSMCB.2004.831165

    Article  Google Scholar 

  16. I. Despotović, E. Ansteenkiste, W. Philips, Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation. IEEE Signal Process. Lett. 20(4), 295–298 (2013). https://doi.org/10.1109/LSP.2013.2244080

    Article  Google Scholar 

  17. R.R. Gharieb, Incorporating local data and KL membership divergence into hard C-means clustering for fuzzy and noise-robust data segmentation. Mach. Learn. Data Min. 2018, 35–53 (2018). https://doi.org/10.5772/intechopen.74514

    Article  Google Scholar 

  18. N. Giordana, W. Pieczynski, Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 465–475 (1997). https://doi.org/10.1109/34.589206

    Article  Google Scholar 

  19. M. Gong, Y. Liang, J. Shi et al., Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013). https://doi.org/10.1109/TIP.2012.2219547

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Guo, A. Sengur, A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst. Signal Process. 32(4), 1699–1723 (2013). https://doi.org/10.1007/s00034-012-9531-x

    Article  MathSciNet  Google Scholar 

  21. M.A. Hasnat, O. Alata, A. Tremeau, Model-based hierarchical clustering with Bregman divergences and Fishers mixture model: application to depth image analysis. Stats. Comput. 26(4), 861–880 (2016). https://doi.org/10.1007/s11222-015-9576-3

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Hua, Y. Cheng, H. Wang, Y. Qin, D. Chen, Geometric target detection based on total Bregman divergence. Digit. Signal Process. 75(75), 232–241 (2018). https://doi.org/10.1016/j.dsp.2018.01.008

    Article  MathSciNet  Google Scholar 

  23. H.C. Huang, Y.Y. Chuang, C.S. Chen, Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(1), 120–134 (2012). https://doi.org/10.1109/TFUZZ.2011.2170175

    Article  Google Scholar 

  24. C.W. Huang, K.P. Lin, M.C. Wu, et al., Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Pattern Anal. Appl. 18(1), 459–470 (2015). https://doi.org/10.1007/s00500-014-1264-2

    Article  Google Scholar 

  25. P. Kaur, Intuitionistic fuzzy sets based credibilistic fuzzy C-means clustering for medical image segmentation. Int. J. Inf. Technol. 9(4), 345–351 (2017). https://doi.org/10.1007/s41870-017-0039-2

    Article  Google Scholar 

  26. P. Kaur, A.K. Soni, A. Gosain, A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images. Pattern Recognit. Lett. 34(2), 163–175 (2013). https://doi.org/10.1016/j.patrec.2012.09.015

    Article  Google Scholar 

  27. D. Koundal, B. Sharma, E. Gandotra, Spatial intuitionistic fuzzy set-based image segmentation. Imaging Med. 9(4), 95–101 (2017)

    Google Scholar 

  28. T. Krassimir, Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  29. S. Krinidis, V. Chatzis, A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010). https://doi.org/10.1109/TIP.2010.2040763

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993). https://doi.org/10.1109/91.227387

    Article  Google Scholar 

  31. D. Kumar, H. Verma, Mehra, R.K. Agrawal, A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image. Multimed Tools Appl. 78(6), 1–25 (2018). https://doi.org/10.1007/s11042-018-5954-0

    Article  Google Scholar 

  32. D. Kumar, R.K. Agrawal, H. Verma, Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation. Soft Comput. 24(6), 4003–4026 (2020). https://doi.org/10.1007/s00500-019-04169-y

    Article  Google Scholar 

  33. A.W.C. Liew, S.H. Leung, W.H. Lau, Fuzzy image clustering incorporating spatial continuity. IEE Proc. Vis. Image Signal Proc. 147(2), 185–192 (2000). https://doi.org/10.1049/ip-vis:20000218

    Article  Google Scholar 

  34. K.P. Lin, A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 22(5), 1074–1087 (2014). https://doi.org/10.1109/TFUZZ.2013.2280141

    Article  Google Scholar 

  35. M. Liu, Total Bregman Divergence, a Robust Divergence Measure, and its Applications (University of Florida, Gainesville, 2011)

    Google Scholar 

  36. M. Liu, B.C. Vemuri, S. Amari et al., Shape retrieval using hierarchical total Bregman soft clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2407–2419 (2012). https://doi.org/10.1109/tpami.2012.44

    Article  Google Scholar 

  37. J. Luo, Y. Wang, Q. Wang et al., Automatic image segmentation of grape based on computer vision, in Recent Developments in Intelligent Systems and Interactive Applications (2016), pp. 365–370. https://doi.org/10.1007/978-3-319-49568-2_52

  38. D. Martin, C. Fowlkes, D. Tal et al., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001 (2001), pp. 416–423. https://doi.org/10.1109/ICCV.2001.937655

  39. C.E. Shannon, A mathematical theory of communication. Bell. Labs. Tech. J. 27(4), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Shawetaylor, N. Cristianini, Kernel methods for pattern analysis: ranking, clustering and data visualization. J. Am. Stat. Assoc. 101(476), 1730–1730 (2004)

    Google Scholar 

  41. L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2003), pp. 724–726. https://doi.org/10.1109/IEMBS.2003.1279866

  42. E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000). https://doi.org/10.1016/S0165-0114(98)00244-9

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Verma, R.K. Agrawal, A. Sharan, An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation. Appl. Soft Comput. 46(C), 543–557 (2015). https://doi.org/10.1016/j.asoc.2015.12.022

    Article  Google Scholar 

  44. H. Verma, R.K. Agrawal, Possibilistic intuitionistic fuzzy c-means clustering algorithm for MRI brain image segmentation. Int. J. Artif. Intell. Tools 24(5), 1550016 (2015). https://doi.org/10.1142/S0218213015500165

    Article  Google Scholar 

  45. I.K. Vlachos, G.D. Sergiadis, Towards intuitionistic fuzzy image processing, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC) (2005), pp. 2–7. https://doi.org/10.1109/CIMCA.2005.1631233

  46. G.S. Wang, Properties and construction methods of kernel in support vector machine. Comput. Sci. 33(6), 178–182 (2006). https://doi.org/10.3969/j.issn.1002-137X.2006.06.047

    Article  Google Scholar 

  47. N. Wang, M. Guo, Survey on application of fuzzy connectedness in image segmentation. Sci. Technol. Eng. 8(16), 4588–4592 (2008). https://doi.org/10.3969/j.issn.1671-1815.2008.16.037. (in Chinese)

    Article  Google Scholar 

  48. Z. Wang, J. Fan, H. Lou et al., Intuitionistic fuzzy c-mean clustering algorithm incorporating local information for image segmentation. Appl. Res. Comput. 31(9), 2864–2872 (2014). https://doi.org/10.3969/j.issn.1001-3695.2014.09.073. (in Chinese)

    Article  Google Scholar 

  49. K. Wu, M. Yang, Alternative C-means clustering algorithms. Pattern Recognit. 35(10), 2267–2278 (2002). https://doi.org/10.1016/S0031-3203(01)00197-2

    Article  MATH  Google Scholar 

  50. C. Wu, J. Sun, Adaptive robust picture fuzzy clustering algorithm based on total divergence. Binggong Xuebao 40(9), 1890–1901 (2019). https://doi.org/10.3969/j.issn.1000-1093.2019.09.014. (in Chinese)

    Article  Google Scholar 

  51. C. Wu, X. Yang, Robust credibilistic fuzzy local information clustering with spatial information constraints. Digit. Signal Process. 97, 102615 (2020). https://doi.org/10.1016/j.dsp.2019.102615

    Article  Google Scholar 

  52. C. Wu, X. Zhang, Total Bregman divergence-based fuzzy local information C-means clustering for robust image segmentation. Appl. Soft Comput. 94, 106468 (2020). https://doi.org/10.1016/j.asoc.2020.106468

    Article  Google Scholar 

  53. C. Wu, C. Huang, J. Zhang, Intuitionistic fuzzy information-driven total Bregman divergence fuzzy clustering with multiple local information constraints for image segmentation. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02319-8

    Article  Google Scholar 

  54. Z. Xu, J. Wu, Intuitionistic fuzzy c-means clustering algorithms. J. Syst. Eng. Electron. 21(4), 580–590 (2010). https://doi.org/10.3969/j.issn.1004-4132.2010.04.009

    Article  Google Scholar 

  55. Y. Xu, Q. Ye, Generalized mercer kernels and reproducing kernel Banach spaces. Mem. Am. Math. Soc. 258(1243), 1–122 (2019). https://doi.org/10.1090/memo/1243

    Article  MathSciNet  MATH  Google Scholar 

  56. R.R. Yager, On the measure of fuzziness and negation. II. Lattices. Inf. Control 44(3), 236–260 (1980). https://doi.org/10.1016/S0019-9958(80)90156-4

    Article  MathSciNet  MATH  Google Scholar 

  57. R.R. Yager, On the measure of fuzziness and negation part I: membership in the unit interval. Int. J. Gen. Syst. 5(4), 221–229 (2008). https://doi.org/10.1080/03081077908547452

    Article  MATH  Google Scholar 

  58. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  59. S. Zeng, X.Y. Wang, H. Cui, C.J. Zheng, D. Feng, A unified collaborative multi-kernel fuzzy clustering for multiview data. IEEE Trans. Fuzzy Syst. 26(3), 1671–1687 (2018). https://doi.org/10.1109/TFUZZ.2017.2743679

    Article  Google Scholar 

  60. S. Zeng, Z. Wang, R. Huang, L. Chen, D. Feng, A study on multi-kernel intuitionistic fuzzy C-means clustering with multiple attributes. Neurocomputing 335, 59–71 (2019). https://doi.org/10.1016/j.neucom.2019.01.042

    Article  Google Scholar 

  61. F. Zhao, Z. Zeng, H. Liu, R. Lan, J. Fan, Semi-supervised approach to surrogate-assisted multi objective kernel intuitionistic fuzzy clustering algorithm for color image segmentation. IEEE Trans. Fuzzy Syst. 28(6), 1023–1034 (2020). https://doi.org/10.1109/TFUZZ.2020.2973121

    Article  Google Scholar 

  62. F. Zhao, W.J. Sun, H.Q. Liu et al., Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching. J. Electron. Inf. Technol. 42(4), 1006–1012 (2020). https://doi.org/10.11999/JEIT190428

  63. D. Zhang, S. Chen, Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation, in Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE, 2003), pp. 2189–2192. https://doi.org/10.1109/ICMLC.2003.1259869

  64. C. Zhong, Z. Liu, Y. Yang et al., Improved FCM algorithm based on neighboring membership constraint for image segmentation. J. Jilin Univ. (Inf. Sci. Ed.) 31(6), 627–633 (2013). https://doi.org/10.3969/j.issn.1671-5896.2013.06.012

    Article  Google Scholar 

  65. http://mscoco.org/

  66. http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html

  67. https://www.kaggle.com/hasimdev/brain-mri-dataset

  68. http://vision.ucmerced.edu/datasets/landuse.html

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62071378) (Grant No. 61671377, 51709228) and the Shaanxi Natural Science Foundation of China (Grant Nos. 2016JM8034, 2017JM6107, 2018JM4018, 2021JM-459, 2022JM-370).

Author information

Authors and Affiliations

Authors

Contributions

CW was involved in the conceptualization, data curation, funding acquisition, methodology, project administration, resources, supervision, validation, visualization. CH contributed to the formal analysis, investigation, software, writing—original draft, writing—review and editing. JZ contributed to writing—review.

Corresponding author

Correspondence to Congcong Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Huang, C. & Zhang, J. Local Information-Driven Intuitionistic Fuzzy C-Means Algorithm Integrating Total Bregman Divergence and Kernel Metric for Noisy Image Segmentation. Circuits Syst Signal Process 42, 1522–1572 (2023). https://doi.org/10.1007/s00034-022-02175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02175-4

Keywords

Navigation