Skip to main content
Log in

Contrast Enhancement Using Inverted Gaussian Histogram Specification Technique

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Contrast enhancement has become a vital process in improving the human perception as well as machine perception, due to the enormous application of digital imaging techniques in various fields like medical, aerospace, agriculture, machine vision, automation, surveillance, etc. During contrast enhancement by various existing techniques, the advent of adverse side effects like brightness degradation, intensity saturation and appearance of artifacts in the enhanced images is a critical issue, which needs more research attention. In this paper, an inverted Gaussian histogram specification technique for contrast enhancement of differently skewed images is proposed, in which the pixel concentration on either side of the histogram is increased to overcome the drawbacks in the existing methods. The proposed technique uses parameters like mean, standard deviation and inversion constant to generate various inverted Gaussian specified histograms. Further, transformation and objective functions are used to identify the best desired histogram so as to obtain the best enhanced image for the given image. The performance of the proposed method is compared with other existing techniques on the images taken from various standard databases. The experimental results show that the proposed technique is best suitable for contrast enhancement of images with differently skewed histograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. A.N. Avanaki, Exact global histogram specification optimized for structural similarity. Opt. Rev. 16(6), 613–621 (2009). https://doi.org/10.1007/s10043-009-0119-z

    Article  Google Scholar 

  2. S.D. Chen, A.R. Ramli, Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003). https://doi.org/10.1109/TCE.2003.1261233

    Article  Google Scholar 

  3. S.D. Chen, A.R. Ramli, Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003). https://doi.org/10.1109/TCE.2003.1261234

    Article  Google Scholar 

  4. D. Coltuc, P. Bolon, J.M. Chassery, Exact histogram specification. IEEE Trans. Image Process. 15(5), 1143–1152 (2006). https://doi.org/10.1109/TIP.2005.864170

    Article  Google Scholar 

  5. Franzen, R.: Kodak lossless true color image suite. http://r0k.us/graphics/kodak/. Accessed 1 March 2019

  6. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Pearson Education, New Jersey, 2008)

    Google Scholar 

  7. Horita, Y., Shibata, K., Kawayoke, Y., Sazzad, Z. P.: MICT image quality evaluation database. http://mict.eng.u-toyama.ac.jp/mictdb.html. Accessed 1 March 2019

  8. G. Jiang, C.Y. Wong, S.C.F. Lin, M.A. Rahman, T.R. Ren, N. Kwok, H. Shi, Y.-H. Yu, T. Wu, Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach. J. Mod. Opt. 62(7), 536–547 (2015). https://doi.org/10.1080/09500340.2014.991358

    Article  Google Scholar 

  9. S.W. Jung, Two-dimensional histogram specification using two-dimensional cumulative distribution function. Electron. Lett. 50(12), 872–874 (2014). https://doi.org/10.1049/el.2014.0287

    Article  Google Scholar 

  10. T. Kim, J. Paik, Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Trans. Consum. Electron. 54(4), 1803–1810 (2008). https://doi.org/10.1109/TCE.2008.4711238

    Article  Google Scholar 

  11. Y.T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (2002). https://doi.org/10.1109/30.580378

    Article  Google Scholar 

  12. S. Lal, M. Chandra, Efficient Algorithm for contrast enhancement of natural images. Int. Arab. J. Inf. Technol. 11(1), 95–102 (2014). http://iajit.org/PDF/vol.11,no.1/5307.pdf

  13. E.C. Larson, D.M. Chandler, Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010). https://doi.org/10.1117/1.3267105

    Article  Google Scholar 

  14. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition and Measuring Ecological Statistics. 2, 416–423 (2001). https://doi.org/10.1109/ICCV.2001.937655

  15. A. Nandal, H. Gamboa-Rosales, A. Dhaka et al., Image edge detection using fractional calculus with feature and contrast enhancement. Circuits Syst. Signal Process. 37, 3946–3972 (2018). https://doi.org/10.1007/s00034-018-0751-6

    Article  MATH  Google Scholar 

  16. M. Nikolova, Y.W. Wen, R. Chan, Exact histogram specification for digital images using a variational approach. J. Math. Imaging Vis. 46(3), 309–325 (2013). https://doi.org/10.1007/s10851-012-0401-8

    Article  MathSciNet  MATH  Google Scholar 

  17. C.H. Ooi, N.P. Kong, H. Ibrahim, Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 55(4), 2072–2080 (2009). https://doi.org/10.1109/TCE.2009.5373771

    Article  Google Scholar 

  18. M.E. Reddy, G.R. Reddy, Recursive median and mean partitioned one-to-one gray level mapping transformations for image enhancement. Circuits Syst. Signal Process. 38, 3227–3250 (2019). https://doi.org/10.1007/s00034-018-1013-3

    Article  Google Scholar 

  19. D. Sen, S.K. Pal, Automatic exact histogram specification for contrast enhancement and visual system based quantitative evaluation. IEEE Trans. Image Process. 20(5), 1211–1220 (2011). https://doi.org/10.1109/TIP.2010.2083676

    Article  MathSciNet  MATH  Google Scholar 

  20. H.R. Sheikh, Z. Wang, L. Cormack, A.C. Bovik, “LIVE image quality assessment database release 2”, http://live.ece.utexas.edu/research/quality. Accessed 1 March 2019

  21. K.S. Sim, C.P. Tso, Y.Y. Tan, Recursive sub-image histogram equalization applied to gray scale images. Pattern. Recognit. Lett. 28(10), 1209–1221 (2007). https://doi.org/10.1016/j.patrec.2007.02.003

    Article  Google Scholar 

  22. C.C. Sun, S.J. Ruan, M.C. Shie, T.W. Pai, Dynamic contrast enhancement based on histogram specification. IEEE Trans. Consum. Electron. 51(4), 1300–1305 (2005). https://doi.org/10.1109/TCE.2005.1561859

    Article  Google Scholar 

  23. J.R. Tang, N.A. Mat Isa, Adaptive image enhancement based on bi-histogram equalization with a clipping limit. Comput. Electr. Eng. 40(8), 86–103 (2014). https://doi.org/10.1016/j.compeleceng.2014.05.017

    Article  Google Scholar 

  24. Test images. http://dragon.larc.nasa.gov/retinex/pao/news/. Accessed 1 March 2019

  25. USC-SIPI image database. http://sipi.usc.edu/database/database.php. Accessed 1 March 2019

  26. Y. Wan, D. Shi, Joint exact histogram specification and image enhancement through the wavelet transform. IEEE Trans. Image Process. 16(9), 2245–2250 (2007). https://doi.org/10.1109/TIP.2007.902332

    Article  MathSciNet  Google Scholar 

  27. Y. Wang, Q. Chen, B. Zhang, Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (2002). https://doi.org/10.1109/30.754419

    Article  Google Scholar 

  28. B. Xiao, H. Tang, Y. Jiang, W. Li, G. Wang, Brightness and contrast controllable image enhancement based on histogram specification. Neurocomputing. 275, 2798–2809 (2018). https://doi.org/10.1016/j.neucom.2017.11.057

    Article  Google Scholar 

  29. Y.J. Zhang, Improving the accuracy of direct histogram specification. Electron. Lett. 28(3), 213–214 (2007). https://doi.org/10.1049/el:19920132

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The work is done by the corresponding author S. Jayasankari as a part of her Ph.D. programme under the supervision and direction of Professor Dr. S. Domnic.

Corresponding author

Correspondence to S. Jayasankari.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest/competing interests

Code Availability (Software Application or Custom Code)

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasankari, S., Domnic, S. Contrast Enhancement Using Inverted Gaussian Histogram Specification Technique. Circuits Syst Signal Process 40, 1252–1277 (2021). https://doi.org/10.1007/s00034-020-01515-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01515-6

Keywords

Navigation