Skip to main content
Log in

A Novel Simple 4-D Hyperchaotic System with a Saddle-Point Index-2 Equilibrium Point and Multistability: Design and FPGA-Based Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel simple 4-D dissipative autonomous hyperchaotic system with a saddle-point index-2 equilibrium point. The dynamics of the new system consists of nine terms with two nonlinear terms. Thus, the proposed system is one of the simplest 4-D hyperchaotic systems. The new system also shows multistability behavior for some range of its parameters. Bifurcation diagrams, Lyapunov spectrum, Kaplan–Yorke dimension, and phase plots are used to analyze the complex dynamical behavior of the system. The discrete-time equivalent of the presented hyperchaotic system is made by using the Euler algorithm for improving the embedded chaos-based engineering applications on FPGA. Then, the design of a novel TRNG having chaotic entropy seed has been performed utilizing FPGA-based 4-D hyperchaotic system structure. The Euler-based model in the creation phase on FPGA has been described using VHDL with 32-bit IEEE 754-1985 floating-point format. The designed hyperchaotic system and TRNG unit have been synthesized using Xilinx ISE Design Tools, and chip statistics obtained from place-and-route process have been presented by testing in the Virtex-6 FPGA chip of Xilinx family. The numbers generated in high data rates of 185.447 Mbit/s have been obtained with 370.894 MHz clock frequency for the implementation of the novel TRNG unit. In the last stage, randomness tests of the generated random numbers have been carried out and the generated random numbers have passed successfully all randomness tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Akhshani, A. Akhavan, A. Mobaraki, S.C. Lim, Z. Hassan, Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 19(1), 101–111 (2014)

    MATH  Google Scholar 

  2. A. Al-Khedhairi, A. Elsonbaty, A.H. Abdel Kader, A.A. Elsadany, Dynamic analysis and circuit implementation of a new 4D Lorenz-type hyperchaotic system. Math. Probl. Eng. 2019, 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  3. M. Alcin, I. Koyuncu, M. Tuna, M. Varan, I. Pehlivan, A novel high speed artificial neural network-based chaotic true random number generator on field programmable gate array. Int. J. Circuit Theory Appl. 47(3), 365–378 (2019)

    Google Scholar 

  4. A. Anzo-Hernández, E. Campos-Cantón, M. Nicol, Itinerary synchronization between PWL systems coupled with unidirectional links. Commun. Nonlinear Sci. Numer. Simul. 70, 102–124 (2019)

    MathSciNet  Google Scholar 

  5. P. Arena, S. Baglio, L. Fortuna, G. Manganaro, Hyperchaos from cellular neural networks. Electron. Lett. 31(4), 250–251 (1995)

    Google Scholar 

  6. E. Avaroğlu, Pseudorandom number generator based on Arnold cat map and statistical analysis. Turk. J. Electr. Eng. Comput. Scı. 25(1), 633–643 (2017)

    Google Scholar 

  7. E. Avaroğlu, İ. Koyuncu, A.B. Özer, M. Türk, Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dyn. 82(1–2), 239–248 (2015)

    MathSciNet  Google Scholar 

  8. E. Avaroğlu, A.B. Özer, M. Türk, The study of the reasons for not giving the results of NIST tests of random walk, random walk variable and Lempel Ziv. Turk. J. Sci. Technol. 10(1), 1–8 (2015)

    Google Scholar 

  9. E. Avaroğlu, T. Tuncer, A.B. Özer, M. Türk, A new method for hybrid pseudo random number generator. J. Microelectron. Electron. Compon. Mater. 44(4), 303–311 (2014)

    Google Scholar 

  10. V.V. Bonde, A.D. Kale, Design and implementation of a random number generator on FPGA. Int. J. Sci. Res. 4(5), 203–208 (2015)

    Google Scholar 

  11. T. Bonny, R. Al Debsi, S. Majzoub, A.S. Elwakil, Hardware optimized FPGA implementations of high-speed true random bit generators based on switching-type chaotic oscillators. Circuits Syst. Signal Process. 38(3), 1342–1359 (2019)

    Google Scholar 

  12. Ü. Çavuşoğlu, A. Akgül, S. Kaçar, İ. Pehli̇van, A. Zengi̇n, A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. 9(11), 1285–1296 (2016)

    Google Scholar 

  13. G. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurc. Chaos 09(07), 1465–1466 (1999)

    MathSciNet  MATH  Google Scholar 

  14. L. Chen, S. Tang, Q. Li, S. Zhong, A new 4D hyperchaotic system with high complexity. Math. Comput. Simul. 146, 44–56 (2018)

    MathSciNet  Google Scholar 

  15. Y. Chen, Q. Yang, A new Lorenz-type hyperchaotic system with a curve of equilibria. Math. Comput. Simul. 112, 40–55 (2015)

    MathSciNet  Google Scholar 

  16. Z. Chen, Y. Yang, G. Qi, Z. Yuan, A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360(6), 696–701 (2007)

    MathSciNet  MATH  Google Scholar 

  17. I. Cicek, A.E. Pusane, G. Dundar, A new dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 81(1), 61–70 (2014)

    Google Scholar 

  18. A.M.A. El-Sayed, H.M. Nour, A. Elsaid, A.E. Matouk, A. Elsonbaty, Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system. Appl. Math. Model. 40(5–6), 3516–3534 (2016)

    MathSciNet  MATH  Google Scholar 

  19. R.A. Elmanfaloty, E. Abou-Bakr, Random property enhancement of a 1D chaotic PRNG with finite precision implementation. Chaos, Solitons Fractals 118, 134–144 (2019)

    MathSciNet  Google Scholar 

  20. S. Ergün, U. Güler, K. Asada, IC truly random number generators based on regular and chaotic sampling of chaotic waveforms. Nonlinear Theory Appl. 2(2), 246–261 (2011)

    Google Scholar 

  21. S. Ergün, S. Özoguz, Truly random number generators based on a non-autonomous chaotic oscillator. AEU Int. J. Electron. Commun. 61(4), 235–242 (2007)

    Google Scholar 

  22. S. Ergün, S. Özog̃uz, Truly random number generators based on non-autonomous continuous-time chaos. Int. J. Circuit Theory Appl. 38(1), 1–24 (2010)

    MATH  Google Scholar 

  23. E. Fatemi-Behbahani, K. Ansari-Asl, E. Farshidi, A new approach to analysis and design of chaos-based random number generators using algorithmic converter. Circuits Syst. Signal Process. 35(11), 3830–3846 (2016)

    Google Scholar 

  24. A.M. Garipcan, E. Erdem, Implementation and performance analysis of true random number generator on FPGA environment by using non-periodic chaotic signals obtained from chaotic maps. Arab. J. Sci. Eng. 44(11), 9427–9441 (2019)

    Google Scholar 

  25. A.M. Garipcan, E. Erdem, Implementation of a Digital TRNG Using Jitter Based Multiple Entropy Source on FPGA. Inf. MIDEM J. Microelectron. Electron Compon. Mater. 49(2), 79–90 (2019)

    Google Scholar 

  26. T. Gotthans, J. Petržela, New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81(3), 1143–1149 (2015)

    MathSciNet  Google Scholar 

  27. G.A. Gottwald, I. Melbourne, On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    MathSciNet  MATH  Google Scholar 

  28. G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)

    MathSciNet  MATH  Google Scholar 

  29. X. Huang, L. Liu, X. Li, M. Yu, Z. Wu, A new two-dimensional mutual coupled logistic map and its application for pseudorandom number generator. Math. Probl. Eng. 2019(1), 1–10 (2019)

    MathSciNet  MATH  Google Scholar 

  30. S. Jafari, J.C. Sprott, Simple chaotic flows with a line equilibrium. Chaos, Solitons Fractals 57, 79–84 (2013)

    MathSciNet  MATH  Google Scholar 

  31. S. Jafari, J.C. Sprott, F. Nazarimehr, Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1469–1476 (2015)

    Google Scholar 

  32. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, I. Moroz, Z. Wei, O. Castillo, A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. 87, 105943 (2020)

    Google Scholar 

  33. T. Kaya, A true random number generator based on a Chua and RO-PUF: design, implementation and statistical analysis. Analog Integr. Circuits Signal Process. 102, 415–426 (2020)

    Google Scholar 

  34. S.T. Kingni, V.T. Pham, S. Jafari, G.R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35(6), 1933–1948 (2016)

    MathSciNet  MATH  Google Scholar 

  35. I. Koyuncu, M. Alcin, M. Tuna, I. Pehlivan, M. Varan, S. Vaidyanathan, Real-time high-speed 5-D hyperchaotic Lorenz system on FPGA. Int. J. Comput. Appl. Technol. 61(3), 152–165 (2019)

    Google Scholar 

  36. İ. Koyuncu, M. Tuna, İ. Pehlivan, C.B. Fidan, M. Alçın, Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 102, 445–456 (2020)

    Google Scholar 

  37. İ. Koyuncu, A. Turan Özcerit, The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng. 58, 203–214 (2017)

    Google Scholar 

  38. G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)

    Google Scholar 

  39. C. Li, J.C. Sprott, W. Thio, Bistability in a hyperchaotic system with a line equilibrium. J. Exp. Theor. Phys. 118(3), 494–500 (2014)

    Google Scholar 

  40. Q. Li, S. Hu, S. Tang, G. Zeng, Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172–1188 (2014)

    Google Scholar 

  41. X. Li, X. Fan, J. Yin, Y. Zhang, X. Lv, Adaptive control of a four-dimensional hyperchaotic system. Asian Res. J. Math. 13(1), 1–17 (2019)

    Google Scholar 

  42. J.A. López-Leyva, A. Arvizu-Mondragón, Generador dual simultáneo de números verdaderamente aleatorios. DYNA 83(195), 93–98 (2016)

    Google Scholar 

  43. D. López-Mancilla, G. López-Cahuich, C. Posadas-Castillo, C.E. Castañeda, J.H. García-López et al., Synchronization of complex networks of identical and nonidentical chaotic systems via model-matching control. PLoS ONE 14(5), e0216349 (2019)

    Google Scholar 

  44. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    MathSciNet  MATH  Google Scholar 

  45. J. Ma, Z. Chen, Z. Wang, Q. Zhang, A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. 81(3), 1275–1288 (2015)

    MATH  Google Scholar 

  46. H. Martin, P. Martin-Holgado, P. Peris-Lopez, Y. Morilla, L. Entrena, On the entropy of oscillator-based true random number generators under ionizing radiation. Entropy 20(513), 1–11 (2018)

    Google Scholar 

  47. A.E. Matouk, Dynamics and control in a novel hyperchaotic system. Int. J. Dyn. Control 7(1), 241–255 (2019)

    MathSciNet  Google Scholar 

  48. H. Moqadasi, M.B. Ghaznavi-Ghoushchi, A new Chua’s circuit with monolithic Chua’s diode and its use for efficient true random number generation in CMOS 180 nm. Analog Integr. Circuits Signal Process. 82(3), 719–731 (2015)

    Google Scholar 

  49. M. Murillo-Escobar, C. Cruz-Hernández, L. Cardoza-Avendaño, R. Méndez-Ramírez, L. Cardoza-Avendaño, A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)

    MathSciNet  Google Scholar 

  50. F. Nazarimehr, K. Rajagopal, J. Kengne, S. Jafari, V.T. Pham, A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria. Chaos, Solitons Fractals 111, 108–118 (2018)

    MathSciNet  MATH  Google Scholar 

  51. H. Nejati, A. Beirami, W.H. Ali, Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map. Analog Integr. Circuits Signal Process. 73(1), 363–374 (2012)

    Google Scholar 

  52. L. Palacios-Luengas, J. Pichardo-Méndez, J. Díaz-Méndez, F. Rodríguez-Santos, R. Vázquez-Medina, PRNG based on skew tent map. Arab. J. Sci. Eng. 44, 3817–3830 (2019)

    Google Scholar 

  53. A.D. Pano-Azucena, E. Tlelo-Cuautle, G. Rodriguez-Gomez, L.G. De La Fraga, FPGA-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials. AIP Adv. 8(7), 075217 (2018)

    Google Scholar 

  54. V.T. Pham, S. Jafari, X. Wang, J. Ma, A chaotic system with different shapes of equilibria. Int. J. Bifurc. Chaos 26(04), 1650069 (2016)

    MathSciNet  MATH  Google Scholar 

  55. K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, B. Ayele, B. Karthikeyan Rajagopal, Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37, 3702–3724 (2018)

    MathSciNet  MATH  Google Scholar 

  56. K. Rajagopal, M. Tuna, A. Karthikeyan, İ. Koyuncu, P. Duraisamy, A. Akgul, Dynamical analysis, sliding mode synchronization of a fractional-order memristor Hopfield neural network with parameter uncertainties and its non-fractional-order FPGA implementation. Eur. Phys. J. Spec. Top. 228(10), 2065–2080 (2019)

    Google Scholar 

  57. A.A. Rezk, A.H. Madian, A.G. Radwan, A.M. Soliman, Reconfigurable chaotic pseudo random number generator based on FPGA. AEU Int. J. Electron. Commun. 98, 174–180 (2019)

    Google Scholar 

  58. W.S. Sayed, A.G. Radwan, M. Elnawawy, H. Orabi, A. Sagahyroon et al., Two-dimensional rotation of chaotic attractors: demonstrative examples and FPGA realization. Circuits Syst. Signal Process. 38(10), 1–14 (2019)

    Google Scholar 

  59. J.P. Singh, J. Koley, A. Akgul, B. Gurevin, B.K. Roy, A new chaotic oscillator containing generalised memristor, single op-amp and RLC with chaos suppression and an application for the random number generation. Eur. Phys. J. Spec. Top. 228(10), 2233–2245 (2019)

    Google Scholar 

  60. J.P. Singh, B.K. Roy, Crisis and inverse crisis route to chaos in a new 3-D chaotic system with saddle, saddle foci and stable node foci nature of equilibria. Optik (Stuttg) 127(24), 11982–12002 (2016)

    Google Scholar 

  61. J.P. Singh, B.K. Roy, The nature of Lyapunov exponents is (+, +, −, −). Is it a hyperchaotic system? Chaos, Solitons Fractals 92, 73–85 (2016)

    MathSciNet  MATH  Google Scholar 

  62. J.P. Singh, B.K. Roy, Analysis of an one equilibrium novel hyperchaotic system and its circuit validation. Int. J. Control Theory Appl. 8(3), 1015–1023 (2015)

    Google Scholar 

  63. J.P. Singh, B.K. Roy, A novel asymmetric hyperchaotic system and its circuit validation. Int. J. Control Theory Appl. 8(3), 1005–1013 (2015)

    Google Scholar 

  64. P.P. Singh, J.P. Singh, B.K. Roy, Synchronization and anti-synchronization of Lu and Bhalekar-Gejji chaotic systems using nonlinear active control. Chaos, Solitons Fractals 69, 31–39 (2014)

    MathSciNet  MATH  Google Scholar 

  65. J.C. Sprott, Strange attractors with various equilibrium types. Eur. Phys. J. Spec. Top. 224(8), 1409–1419 (2015)

    Google Scholar 

  66. E. Tlelo-Cuautle, J.J. Rangel-Magdaleno, A.D. Pano-Azucena, P.J. Obeso-Rodelo, J.C. Nunez-Perez, FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 66–80 (2015)

    MathSciNet  Google Scholar 

  67. M. Tuna, M. Alçın, İ. Koyuncu, C.B. Fidan, İ. Pehlivan, High speed FPGA-based chaotic oscillator design. Microprocess. Microsyst. 66, 72–80 (2019)

    Google Scholar 

  68. M. Tuna, C.B. Fidan, A Study on the importance of chaotic oscillators based on FPGA for true random number generating (TRNG) and chaotic systems. J. Fac. Eng. Archit. Gazi Univ. 33(2), 469–486 (2018)

    Google Scholar 

  69. M. Tuna, A. Karthikeyan, K. Rajagopal, M. Alçın, İ. Koyuncu, Hyperjerk multiscroll oscillators with megastability: analysis, FPGA implementation and a novel ANN-ring-based true random number generator. AEU Int. J. Electron. Commun. 112, 152941 (2019)

    Google Scholar 

  70. T. Tuncer, E. Avaroglu, M. Türk, A.B. Ozer, Implementation of non-periodic sampling true random number generator on FPGA. Inf. MIDEM. 44(4), 296–302 (2015)

    Google Scholar 

  71. S. Vaidyanathan, A.T. Azar, A. Boulkroune, A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation. Int. J. Autom. Control 12(1), 5–26 (2018)

    Google Scholar 

  72. S. Vaidyanathan, I. Pehlivan, L.G. Dolvis, K. Jacques, M. Alcin et al., A novel ANN-based four-dimensional two-disk hyperchaotic dynamical system, bifurcation analysis, circuit realisation and FPGA-based TRNG implementation. Int. J. Comput. Appl. Technol. 62(1), 20–35 (2020)

    Google Scholar 

  73. C. Volos, J.O. Maaita, S. Vaidyanathan, V.T. Pham, I. Stouboulos, I. Kyprianidis, A novel four-dimensional hyperchaotic four-wing system with a saddle–focus equilibrium. IEEE Trans. Circuits Syst. II Express Briefs 64(3), 339–343 (2017)

    Google Scholar 

  74. H. Wang, G. Dong, New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system. Appl. Math. Comput. 346, 272–286 (2019)

    MathSciNet  MATH  Google Scholar 

  75. X. Wang, G. Chen, Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71(3), 429–436 (2013)

    MathSciNet  Google Scholar 

  76. Y. Wang, C. Hui, C. Liu, C. Xu, Theory and implementation of a very high throughput true random number generator in field programmable gate array. Rev. Sci. Instrum. 87(4), 044704 (2016)

    Google Scholar 

  77. Y. Wang, Z. Liu, J. Ma, H. He, A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)

    MathSciNet  MATH  Google Scholar 

  78. C. Wannaboon, M. Tachibana, W. San-Um, A 0.18-μm CMOS high-data-rate true random bit generator through ΔΣ modulation of chaotic jerk circuit signals. Chaos 28(6), 063126 (2018)

    Google Scholar 

  79. Z. Wei, W. Zhang, Hidden hyperchaotic attractors in a modified Lorenz–Stenflo system with only one stable equilibrium. Int. J. Bifurc. Chaos 24(10), 1450127 (2014)

    MathSciNet  MATH  Google Scholar 

  80. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  81. C. Zhang, Theoretical design approach of four-dimensional piecewise-linear multi-wing hyperchaotic differential dynamic system. Optik (Stuttg) 127(11), 4575–4580 (2016)

    Google Scholar 

  82. P. Zhou, F. Yang, Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points. Nonlinear Dyn. 76(1), 473–480 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Tuna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, P., Rajagopal, K., Koyuncu, I. et al. A Novel Simple 4-D Hyperchaotic System with a Saddle-Point Index-2 Equilibrium Point and Multistability: Design and FPGA-Based Applications. Circuits Syst Signal Process 39, 4259–4280 (2020). https://doi.org/10.1007/s00034-020-01367-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01367-0

Keywords

Navigation