Skip to main content
Log in

A Recursive Parameter Estimation Algorithm for Modeling Signals with Multi-frequencies

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we focus on the modeling problem of the multi-frequency signals which contain many different frequency components. Based on the Newton search and the measured data, a Newton recursive parameter estimation algorithm is developed to estimate the amplitude, the angular frequency and the phase of a multi-frequency signal. In order to improve the performance of the identification algorithm, a convergence factor is introduced in the Hessian matrix of the developed Newton recursive method. The numerical examples verify that the proposed algorithm is effective for modeling the multi-frequency sine signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Campos, A. Garijo, X. Jarque, P. Vindel, Newton method for symmetric quartic polynomial. Appl. Math. Comput. 290, 326–335 (2016)

    MathSciNet  MATH  Google Scholar 

  2. D.C. Chen, X.X. Zhang, H. Xiong et al., A first-principles study of the SF6 decomposed products adsorbed over defective WS2 monolayer as promising gas sensing device. IEEE Trans. Device Mater. Reliab. 19(3), 473–483 (2019)

    Google Scholar 

  3. Z.W. Chen, X.X. Zhang, H. Xiong et al., Dissolved gas analysis in transformer oil using Pt-doped WSe2 monolayer based on first principles method. IEEE Access 7, 72012–72019 (2019)

    Google Scholar 

  4. T. Cui, F. Ding, A. Alsaadi, T. Hayat, Joint multi-innovation recursive extended least squares parameter and state estimation for a class of state-space systems. Int. J. Control Autom. Syst. (2020). https://doi.org/10.1007/s12555-019-0053-1

    Article  Google Scholar 

  5. J. Ding, J.Z. Chen, J.X. Lin, L.J. Wan, Particle filtering based parameter estimation for systems with output-error type model structures. J. Frankl. Inst. 356(10), 5521–5540 (2019)

    MathSciNet  MATH  Google Scholar 

  6. F. Ding, L. Lv, J. Pan, X.K. Wan, X.B. Jin, Two-stage gradient-based iterative estimation methods for controlled autoregressive systems using the measurement data. Int. J. Control Autom. Syst. (2020). https://doi.org/10.1007/s12555-019-0140-

    Article  Google Scholar 

  7. F. Ding, F.F. Wang, L. Xu, M.H. Wu, Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering. J. Frankl. Inst. 354(3), 1321–1339 (2017)

    MathSciNet  MATH  Google Scholar 

  8. F. Ding, L. Xu, D.D. Meng et al., Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model. J. Comput. Appl. Math. 369, 112575 (2020)

    MathSciNet  MATH  Google Scholar 

  9. F. Ding, X. Zhang, L. Xu, The innovation algorithms for multivariable state-space models. Int. J. Adapt. Control Signal Process. 33(11), 1601–1608 (2019)

    MathSciNet  Google Scholar 

  10. Y. Dong, S.J. Qin, Regression on dynamic PLS structures for supervised learning of dynamic data. J. Process Control 68, 64–72 (2018)

    Google Scholar 

  11. J.A. Ezquerro, M.A. Hernández-Verón, Domains of global convergence for Newton’s method from auxiliary points. Appl. Math. Lett. 85, 48–56 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Z.P. Feng, H.Q. Ma, M.J. Zuo, Vibration signal models for fault diagnosis of planet bearings. J. Sound Vib. 370(26), 372–393 (2016)

    Google Scholar 

  13. B. Fu, C.X. Ouyang, C.S. Li, J.W. Wang, E. Gul, An improved mixed integer linear programming approach based on symmetry diminishing for unit commitment of hybrid power system. Energies 12(5), 833 (2019)

    Google Scholar 

  14. S. Giarnetti, F. Leccese, M. Caciotta, Non-recursive multi-harmonic least squares fitting for grid frequency estimation. Measurement 66, 229–237 (2015)

    Google Scholar 

  15. P.C. Gong, W.Q. Wang, F.C. Li, H. Cheung, Sparsity-aware transmit beamspace design for FDA-MIMO radar. Signal Process. 144, 99–103 (2018)

    Google Scholar 

  16. P.C. Gong, W.Q. Wang, X.R. Wan, Adaptive weight matrix design and parameter estimation via sparse modeling for MIMO radar. Signal Process. 139, 1–11 (2017)

    Google Scholar 

  17. J. Hu, X. Zhan, J. Wu, H.C. Yan, Optimal tracking performance of NCSs with time-delay and encoding–decoding constraints. Int. J. Control Autom. Syst. (2020). https://doi.org/10.1007/s12555-019-0300-5

    Article  Google Scholar 

  18. M.H. Li, X.M. Liu et al., The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle. Int. J. Adapt. Control Signal Process. 33(7), 1189–1211 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Y.L. Li, Y. Zhang, Y. Li et al., Experimental study on compatibility of eco-friendly insulating medium C\(_5\)F\(_10\)O/CO\(_2\) gas mixture with copper and aluminum. IEEE Access 7, 83994–84002 (2019)

    Google Scholar 

  20. S.Y. Liu, F. Ding, L. Xu, T. Hayat, Hierarchical principle-based iterative parameter estimation algorithm for dual-frequency signals. Circuits Syst. Signal Process. 38(7), 3251–3268 (2019)

    Google Scholar 

  21. L.J. Liu, F. Ding, L. Xu et al., Maximum likelihood recursive identification for the multivariate equation-error autoregressive moving average systems using the data filtering. IEEE Access 7, 41154–41163 (2019)

    Google Scholar 

  22. N. Liu, S. Mei, D. Sun, W. Shi, J. Feng, Y.M. Zhou, F. Mei, J. Xu, Y. Jiang, X.A. Cao, Effects of charge transport materials on blue fluorescent organic light-emitting diodes with a host-dopant system. Micromachines 10(5), 344 (2019)

    Google Scholar 

  23. L.L. Lv, S.Y. Tang, L. Zhang, Parametric solutions to generalized periodic Sylvester bimatrix equations. J. Frankl. Inst. (2020). https://doi.org/10.1016/j.jfranklin.2019.12.031

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Ma, F. Ding, New gradient based identification methods for multivariate pseudo-linear systems using the multi-innovation and the data filtering. J. Frankl. Inst. 354(3), 1568–1583 (2017)

    MathSciNet  MATH  Google Scholar 

  25. J.X. Ma, F. Ding, Filtering-based multistage recursive identification algorithm for an input nonlinear output-error autoregressive system by using the key term separation technique. Circuits Syst. Signal Process. 36(2), 577–599 (2017)

    MATH  Google Scholar 

  26. H. Ma, J. Pan et al., Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems. IET Control Theory Appl. 13(18), 3040–3051 (2019)

    Google Scholar 

  27. J.X. Ma, W.L. Xiong, J. Chen et al., Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter. IET Control Theory Appl. 11(6), 857–869 (2017)

    MathSciNet  Google Scholar 

  28. F.Y. Ma, Y.K. Yin, M. Li, Start-up process modelling of sediment microbial fuel cells based on data driven. Math. Probl. Eng. 2019, Article Number: 7403732 (2019)

  29. G. Mzyk, P. Wachel, Kernel-based identification of Wiener–Hammerstein system. Automatica 83, 275–281 (2017)

    MathSciNet  MATH  Google Scholar 

  30. F.V. Nelwamondo, D. Golding, T. Marwala, A dynamic programming approach to missing data estimation using neural networks. Inf. Sci. 37(10), 49–58 (2013)

    MathSciNet  Google Scholar 

  31. M. Öztürk, A. Akan, Local instantaneous frequency estimation of multi-component signals. Comput. Electr. Eng. 34(4), 281–289 (2008)

    MATH  Google Scholar 

  32. J. Pan, X. Jiang, X.K. Wan, W. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15(3), 1189–1197 (2017)

    Google Scholar 

  33. J. Pan, W. Li, H.P. Zhang, Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int. J. Control Autom. Syst. 16(6), 2878–2887 (2018)

    Google Scholar 

  34. H. Ramos, M.T.T. Monteiro, A new approach based on the Newton’s method to solve systems of nonlinear equations. J. Comput. Appl. Math. 318, 3–13 (2017)

    MathSciNet  MATH  Google Scholar 

  35. W.X. Shi, N. Liu, Y.M. Zhou, X.A. Cao, Effects of postannealing on the characteristics and reliability of polyfluorene organic light-emitting diodes. IEEE Trans. Electron Devices 66(2), 1057–1062 (2019)

    Google Scholar 

  36. Q.J. Song, Recursive identification of systems with binary-valued outputs and with ARMA noises. Automatica 93, 106–113 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Z.D. Su, Y. Li, G.C. Yang, Dietary composition perception algorithm using social robot audition for Mandarin Chinese. IEEE Access 8, 8768–8782 (2020)

    Google Scholar 

  38. W. Sun, H.C. So, L. Lin, Correlation-based algorithm for multi-dimensional single-tone frequency estimation. Signal Process. 93(4), 765–771 (2013)

    Google Scholar 

  39. Z. Tian, M. Tian, Y. Zhang, P. Wen, An iteration method for solving the linear system Ax = b. Comput. Math. Appl. 75(8), 2710–2722 (2018)

    MathSciNet  MATH  Google Scholar 

  40. K. Tiels, M. Schoukens, J. Schoukens, Initial estimates for Wiener–Hammerstein models using phase-coupled multisines. Automatica 60, 201–209 (2015)

    MathSciNet  MATH  Google Scholar 

  41. L.J. Wan, F. Ding, Decomposition and gradient-based iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst. Signal Process. 38(7), 2971–2991 (2019)

    Google Scholar 

  42. X.K. Wan, Y. Li, C. Xia, M.H. Wu, J. Liang, N. Wang, A T-wave alternans assessment method based on least squares curve fitting technique. Measurement 86, 93–100 (2016)

    Google Scholar 

  43. Y.J. Wang, F. Ding, M.H. Wu, Recursive parameter estimation algorithm for multivariate output-error systems. J. Frankl. Inst. 355(12), 5163–5181 (2018)

    MathSciNet  MATH  Google Scholar 

  44. L. Wang, H. Liu, L.V. Dai, Y.W. Liu, Novel method for identifying fault location of mixed lines. Energies 11(6), 1529 (2018)

    Google Scholar 

  45. L. Wei, W.D. Qi, Y.Y. Xu, B. Xu, Closed-form, robust and accurate multi-frequency phase unwrapping: frequency design and algorithm. Signal Process. 138, 159–166 (2017)

    Google Scholar 

  46. T.Z. Wu, X. Shi, L. Liao, C.J. Zhou, H. Zhou, Y.H. Su, A capacity configuration control strategy to alleviate power fluctuation of hybrid energy storage system based on improved particle swarm optimization. Energies 12(4), 642 (2019)

    Google Scholar 

  47. L. Xu, The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1–12 (2017). https://doi.org/10.1177/1687814017730003

    Article  Google Scholar 

  48. L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)

    MathSciNet  MATH  Google Scholar 

  49. H.B. Yan, Z.M. Li, Infrared and visual image fusion based on multi-scale feature decomposition. Optik 203, 163900 (2020)

    Google Scholar 

  50. G.C. Yang, Z.J. Chen, Y. Li, Z.D. Su, Rapid relocation method for mobile robot based on improved ORB-SLAM2 algorithm. Remote Sens. 11(2), 149 (2019). https://doi.org/10.3390/rs11020149

    Article  Google Scholar 

  51. C.C. Yin, C.W. Wang, The perturbed compound Poisson risk process with investment and debit interest. Methodol. Comput. Appl. Prob. 12(3), 391–413 (2010)

    MathSciNet  MATH  Google Scholar 

  52. C.C. Yin, Y.Z. Wen, Optimal dividend problem with a terminal value for spectrally positive Levy processes. Insur. Math. Econ. 53(3), 769–773 (2013)

    MATH  Google Scholar 

  53. C.C. Yin, Y.Z. Wen, Exit problems for jump processes with applications to dividend problems. J. Comput. Appl. Math. 245, 30–52 (2013)

    MathSciNet  MATH  Google Scholar 

  54. C.C. Yin, Y.Z. Wen, An extension of Paulsen–Gjessing’s risk model with stochastic return on investments. Insur. Math. Econ. 52(3), 469–476 (2013)

    MathSciNet  MATH  Google Scholar 

  55. C.C. Yin, Y.Z. Wen, Y.X. Zhao, On the optimal dividend problem for a spectrally positive levy process. Astin Bull. 44(3), 635–651 (2014)

    MathSciNet  MATH  Google Scholar 

  56. C.C. Yin, K.C. Yuen, Optimality of the threshold dividend strategy for the compound Poisson model. Stat. Prob. Lett. 81(12), 1841–1846 (2011)

    MathSciNet  MATH  Google Scholar 

  57. C.C. Yin, K.C. Yuen, Exact joint laws associated with spectrally negative Levy processes and applications to insurance risk theory. Front. Math. China 9(6), 1453–1471 (2014)

    MathSciNet  MATH  Google Scholar 

  58. C.C. Yin, K.C. Yuen, Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. J. Ind. Manag. Optim. 11(4), 1247–1262 (2015)

    MathSciNet  MATH  Google Scholar 

  59. C.P. Yu, J. Chen, M. Verhaegen, Subspace identification of individual systems in a large-scale heterogeneous network. Automatica 109, 108517 (2019)

    MathSciNet  MATH  Google Scholar 

  60. C.P. Yu, L. Ljung, A. Wills, M. Verhaegen, Constrained subspace method for the identification of structured state-space models. IEEE Trans. Autom. Control (2020). https://doi.org/10.1109/TAC.2019.2957703

    Article  Google Scholar 

  61. Z.B. Yu, Y.K. Sun, W.D. Jin, A novel generalized demodulation approach for multi-component signals. Signal Process. 118, 188–202 (2016)

    Google Scholar 

  62. X. Zhang, F. Ding, Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 51(2), 275–290 (2020)

    MathSciNet  Google Scholar 

  63. X. Zhang, F. Ding, E.F. Yang, State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors. Int. J. Adapt. Control Signal Process. 33(7), 1157–1173 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Y. Zhang, X.X. Zhang, Y. Li et al., AC breakdown and decomposition characteristics of environmental friendly gas C5F10O/Air and C5F10O/N-2. IEEE Access 7, 73954–73960 (2019)

    Google Scholar 

  65. N. Zhao, Joint optimization of cooperative spectrum sensing and resource allocation in multi-channel cognitive radio sensor networks. Circuits Syst. Signal Process. 35(7), 2563–2583 (2016)

    MATH  Google Scholar 

  66. N. Zhao, Y. Liang, Y. Pei, Dynamic contract incentive mechanism for cooperative wireless networks. IEEE Trans. Veh. Technol. 67(11), 10970–10982 (2018)

    Google Scholar 

  67. X.L. Zhao, Z.Y. Lin, B. Fu, L. He, C.S. Li, Research on the predictive optimal PID plus second order derivative method for AGC of power system with high penetration of photovoltaic and wind power. J. Electr. Eng. Technol. 14(3), 1075–1086 (2019)

    Google Scholar 

  68. X.L. Zhao, Z.Y. Lin, B. Fu, L. He, F. Na, Research on automatic generation control with wind power participation based on predictive optimal 2-degree-of-freedom PID strategy for multi-area interconnected power system. Energies 11(12), 3325 (2018)

    Google Scholar 

  69. X.L. Zhao, F. Liu, B. Fu, F. Na, Reliability analysis of hybrid multi-carrier energy systems based on entropy-based Markov model. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 230(6), 561–569 (2016)

    Google Scholar 

  70. N. Zhao, M.H. Wu, J.J. Chen, Android-based mobile educational platform for speech signal processing. Int. J. Electr. Eng. Educ. 54(1), 3–16 (2017)

    Google Scholar 

  71. H.J. Zhao, H.J. Yang, Semismooth Newton methods with domain decomposition for American options. J. Comput. Appl. Math. 337, 37–50 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61873111), the Qing Lan Project of Jiangsu Province, the “333” Project of Jiangsu Province (No. BRA2018328) and the Jiangsu Overseas Visiting Scholar Program For University Prominent Young & Middle-Aged Teachers and Presidents. The authors are grateful to Professor Feng Ding for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Song, G. A Recursive Parameter Estimation Algorithm for Modeling Signals with Multi-frequencies. Circuits Syst Signal Process 39, 4198–4224 (2020). https://doi.org/10.1007/s00034-020-01356-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01356-3

Keywords

Navigation