Skip to main content
Log in

An Event-Triggered Approach to Robust Fault Detection for Nonlinear Uncertain Markovian Jump Systems with Time-Varying Delays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of robust fault detection is investigated for nonlinear uncertain Markovian jump systems subject to time-varying delays, Lipschitz nonlinearities and parameter uncertainties under the event-triggered protocol. The event-triggered mechanism is introduced to adjust the transmission frequency of the data sent to the remote module. An event-based fault detection method is presented to guarantee the sensitivity of residual to fault and the attenuation of the effect from the disturbance on the residual. In this way, the considered fault detection problem is solvable by testifying the feasibility of \(H_\infty \) filtering problem. By constructing the mode-dependent Lyapunov functional, new sufficient criteria are derived in terms of the linear matrix inequality technique, which insures the stochastic stability with prescribed performance for addressed MJSs. In the end, a numerical example is exploited and the validity of newly presented event-based fault detection method is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.V. Dimarogonas, E. Frazzoli, K.H. Johansson, Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291–1297 (2012)

    Article  MathSciNet  Google Scholar 

  2. S.X. Ding, T. Jeinsch, P.M. Frank, E.L. Ding, A unified approach to the optimization of fault detection systems. Int. J. Adapt. Control Signal Process. 14(7), 725–745 (2000)

    Article  Google Scholar 

  3. H. Dong, Z. Wang, H. Gao, Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2354–2362 (2012)

    Article  MathSciNet  Google Scholar 

  4. H. Dong, Z. Wang, H. Gao, On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays. Signal Process. 92(4), 1117–1125 (2012)

    Article  Google Scholar 

  5. H. Dong, Z. Wang, D.W.C. Ho, H. Gao, Robust \({{{\cal{H}}}}_{\infty }\) filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case. IEEE Trans. Signal Process. 59(7), 3048–3057 (2011)

    Article  MathSciNet  Google Scholar 

  6. S. Dong, Z.-G. Wu, P. Shi, H.R. Karimi, H. Su, Networked fault detection for Markov jump nonlinear systems. IEEE Trans. Fuzzy Syst. 26(6), 3368–3378 (2018)

    Article  Google Scholar 

  7. P. Du, H. Liang, S. Zhao, C.K. Ahn, Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2918351

    Article  Google Scholar 

  8. P. Ellis, Extension of phase plane analysis to quantized systems. IRE Trans. Autom. Control 4(2), 43–54 (1959)

    Article  Google Scholar 

  9. S. Hajshirmohamadi, F. Sheikholeslam, M. Davoodi, N. Meskin, Event-triggered simultaneous fault detection and tracking control for multi-agent systems. Int. J. Control 92(8), 1928–1944 (2019)

    Article  MathSciNet  Google Scholar 

  10. S. He, Fault detection filter design for a class of nonlinear Markovian jumping systems with mode-dependent time-varying delays. Nonlinear Dyn. 91(3), 1871–1884 (2018)

    Article  Google Scholar 

  11. J. Hu, Z. Wang, F.E. Alsaadi, T. Hayat, Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Inf. Fusion 38, 74–83 (2017)

    Article  Google Scholar 

  12. J. Hu, Z. Wang, H. Gao, Joint state and fault estimation for uncertain time-varying nonlinear systems with randomly occurring faults and sensor saturations. Automatica 97, 150–160 (2018)

    Article  MathSciNet  Google Scholar 

  13. X. He, Z. Wang, D. Zhou, Robust fault detection for networked systems with communication delay and data missing. Automatica 45(11), 2634–2639 (2009)

    Article  MathSciNet  Google Scholar 

  14. J. Hu, Z. Wang, D. Chen, F.E. Alsaadi, Estimation, filtering and fusion for networked systems with network-induced phenomena: new progress and prospects. Inf. Fusion 31, 65–75 (2016)

    Article  Google Scholar 

  15. J. Hu, Z. Wang, G.-P. Liu, H. Zhang, Variance-constrained recursive state estimation for time-varying complex networks with quantized measurements and uncertain inner coupling. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2927554

    Article  Google Scholar 

  16. J. Hu, Z. Wang, S. Liu, H. Gao, A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 64, 155–162 (2016)

    Article  MathSciNet  Google Scholar 

  17. S. Jiang, H. Fang, Robust fault detection for networked control systems with nonlinear disturbances and imperfect measurements. Int. J. Syst. Sci. 44(11), 2027–2038 (2013)

    Article  MathSciNet  Google Scholar 

  18. J. Hu, H. Zhang, X. Yu, H. Liu, D. Chen, Design of sliding-mode-based control for nonlinear systems with mixed-delays and packet losses under uncertain missing probability. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2919513

    Article  Google Scholar 

  19. J. Hu, P. Zhang, Y. Kao, H. Liu, D. Chen, Sliding mode control for Markovian jump repeated scalar nonlinear systems with packet dropouts: the uncertain occurrence probabilities case. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124574

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Jiang, S. Yin, Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems. IEEE Trans. Ind. Inf. 14(4), 1415–1423 (2018)

    Article  Google Scholar 

  21. D. Li, J. Ma, H. Zhu, M. Sun, The consensus of multi-agent systems with uncertainties and randomly occurring nonlinearities via impulsive control. Int. J. Control Autom. Syst. 14(4), 1005–1011 (2016)

    Article  Google Scholar 

  22. H. Li, S. Zhao, W. He, R. Lu, Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    Article  MathSciNet  Google Scholar 

  23. H. Li, L. Bai, Q. Zhou, R. Lu, L. Wang, Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2185–2197 (2017)

    Article  Google Scholar 

  24. X. Li, H.R. Karimi, Y. Wang, D. Lu, S. Guo, Robust fault estimation and fault-tolerant control for Markovian jump systems with general uncertain transition rates. J. Frankl. Inst. 355(8), 3508–3540 (2018)

    Article  MathSciNet  Google Scholar 

  25. Y. Li, H.R. Karimi, D. Zhao, Y. Xu, P. Zhao, \(H_{\infty }\) fault detection filter design for discrete-time nonlinear Markovian jump systems with missing measurements. Eur. J. Control 44, 27–39 (2018)

    Article  MathSciNet  Google Scholar 

  26. H. Liang, L. Zhang, H.R. Karimi, Q. Zhou, Fault estimation for a class of nonlinear semi-Markovian jump systems with partly unknown transition rates and output quantization. Int. J. Robust Nonlinear 28(18), 5962–5980 (2018)

    Article  MathSciNet  Google Scholar 

  27. H. Liang, L. Zhang, Y. Sun, T. Huang, Containment control of semi-Markovian multi-agent systems with switching topologies. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2946248

    Article  Google Scholar 

  28. H. Liang, Z. Zhang, C. Ahn, Event-triggered fault detection and isolation of discrete-time systems based on geometric technique. IEEE Trans. Circuits Syst. II Express Briefs (2019). https://doi.org/10.1109/TCSII.2019.2907706

    Article  Google Scholar 

  29. H. Liu, S. Li, H. Wang, Y. Sun, Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454, 30–45 (2018)

    Article  MathSciNet  Google Scholar 

  30. J. Liu, D. Yue, Event-based fault detection for networked systems with communication delay and nonlinear perturbation. J. Frankl. Inst. 350(9), 2791–2807 (2013)

    Article  MathSciNet  Google Scholar 

  31. M.S. Mahmoud, P. Shi, Robust control for Markovian jump linear discrete-time systems with unknown nonlinearities. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(4), 538–542 (2002)

    Article  MathSciNet  Google Scholar 

  32. V.H. Nguyen, Y.S. Suh, Networked estimation with an area-triggered transmission method. Sensors 8(2), 897–909 (2008)

    Article  Google Scholar 

  33. K. Shi, Y. Tang, X. Liu, S. Zhong, Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans. 66, 185–199 (2017)

    Article  Google Scholar 

  34. K. Shi, J. Wang, S. Zhong, X. Zhang, Y. Liu, J. Cheng, New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies. Appl. Math. Comput. 347, 169–193 (2019)

    MathSciNet  MATH  Google Scholar 

  35. W. Sun, S. Su, G. Dong, W. Bai, Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear system with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2898204

    Article  Google Scholar 

  36. W. Sun, S. Su, Y. Wu, J. Xia, V. Nguyen, Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2018.2890256

    Article  Google Scholar 

  37. W. Sun, S. Su, J. Xia, V. Nguyen, Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 2201–2209 (2019)

    Article  Google Scholar 

  38. Y. Tan, D. Du, S. Fei, Co-design of event generator and quantized fault detection for time-delayed networked systems with sensor saturations. J. Frankl. Inst. 354(15), 6914–6937 (2017)

    Article  MathSciNet  Google Scholar 

  39. X. Wan, H. Fang, Fault detection for discrete-time networked nonlinear systems with incomplete measurements. Int. J. Syst. Sci. 44(11), 2068–2081 (2013)

    Article  MathSciNet  Google Scholar 

  40. X. Wang, G. Yang, Event-triggered fault detection for discrete-time TS fuzzy systems. ISA Trans. 76, 18–30 (2018)

    Article  Google Scholar 

  41. H. Xu, A. Sahoo, S. Jagannathan, Stochastic adaptive event-triggered control and network scheduling protocol co-design for distributed networked systems. IET Control Theory Appl. 8(18), 2253–2265 (2014)

    Article  MathSciNet  Google Scholar 

  42. H. Zhang, J. Hu, H. Liu, X. Yu, F. Liu, Recursive state estimation for time-varying complex networks subject to missing measurements and stochastic inner coupling under random access protocol. Neurocomputing 346, 48–57 (2019)

    Article  Google Scholar 

  43. L. Zhang, H. Liang, Y. Sun, C. Ahn, Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2912846

    Article  Google Scholar 

  44. L. Zhang, H. Liang, H. Ma, Q. Zhou, Fault detection and isolation for semi-Markov jump systems with generally uncertain transition rates based on geometric approach. Circuits Syst. Signal Process. 38(3), 1039–1062 (2019)

    Article  Google Scholar 

  45. Z. Zhang, G. Yang, Event-triggered fault detection for a class of discrete-time linear systems using interval observers. ISA Trans. 68, 160–169 (2017)

    Article  Google Scholar 

  46. J. Zhao, M. Gan, C. Zhang, Event-triggered \({{{\cal{H}}}}_{\infty }\) optimal control for continuous-time nonlinear systems using neurodynamic programming. Neurocomputing 360, 14–24 (2019)

    Article  Google Scholar 

  47. P. Zhao, D.H. Zhai, Y. Sun, Y. Li, Adaptive finite-time control of a class of Markovian jump nonlinear systems with parametric and dynamic uncertainties. Nonlinear Anal. Hybrid Syst. 29, 234–246 (2018)

    Article  MathSciNet  Google Scholar 

  48. M. Zhong, Q. Ding, P. Shi, Parity space-based fault detection for Markovian jump systems. Int. J. Syst. Sci. 40(4), 421–428 (2009)

    Article  MathSciNet  Google Scholar 

  49. M. Zhong, H. Ye, P. Shi, G. Wang, Fault detection for Markovian jump systems. IEE Proc. Control Theory Appl. 152(4), 397–402 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Ethics declarations

Conflict of interest

The authors claim that there are no potential conflicts of interest. In addition, this submission has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grant 61673141, the Outstanding Youth Science Foundation of Heilongjiang Province of China under Grant JC2018001, the European Regional Development Fund and Sêr Cymru Fellowship under Grant 80761-USW-059, the Fok Ying Tung Education Foundation of China under Grant 151004 and the Alexander von Humboldt Foundation of Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Hu, J., Chen, D. et al. An Event-Triggered Approach to Robust Fault Detection for Nonlinear Uncertain Markovian Jump Systems with Time-Varying Delays. Circuits Syst Signal Process 39, 3445–3469 (2020). https://doi.org/10.1007/s00034-019-01327-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01327-3

Keywords

Navigation