Skip to main content
Log in

Hankel Norm Performance of Interfered Fixed-Point State-Space Digital Filters with Quantization/Overflow Nonlinearities

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new linear matrix inequality (LMI)-based approach for the Hankel norm performance of fixed-point state-space digital filters subjected to external interference or excitation of finite duration and operating under various concatenations of quantization and overflow nonlinearities. The approach can be used to check the attenuation of undesired memory effects of past excitations on future outputs in the digital filters and to test the asymptotic stability in the absence of external input. The convex optimization problem with LMI constraints is formulated to determine the minimum Hankel norm performance of the digital filter. Finally, numerical simulations are provided to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Agarwal, H. Kar, An improved criterion for the global asymptotic stability of fixed-point state-space digital filters with combinations of quantization and overflow. Digit. Signal Process. 28, 136–143 (2014)

    Article  Google Scholar 

  2. C.K. Ahn, Overflow oscillation elimination of 2-D digital filters in the Roesser model with Wiener process noise. IEEE Signal Process. Lett. 21(10), 1302–1305 (2014)

    Article  Google Scholar 

  3. C.K. Ahn, H. Kar, Expected power bound for two-dimensional digital filters in the Fornasini-Marchesini local state-space model. IEEE Signal Process. Lett. 22(8), 1065–1069 (2015)

    Article  Google Scholar 

  4. C.K. Ahn, P. Shi, Generalized dissipativity analysis of digital filters with finite-wordlength arithmetic. IEEE Trans. Circuits Syst. II 63(4), 386–390 (2016)

    Article  Google Scholar 

  5. C.K. Ahn, P. Shi, Hankel norm performance of digital filters associated with saturation. IEEE Trans. Circuits Syst. II 64(6), 720–724 (2017)

    Article  Google Scholar 

  6. C.K. Ahn, L. Wu, P. Shi, Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica 69, 356–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. P.H. Bauer, E.I. Jury, A stability analysis of two-dimensional nonlinear digital state-space filters. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1578–1586 (1990)

    Article  MATH  Google Scholar 

  8. T. Bose, Combined effects of overflow and quantization in fixed-point digital filters. Digit. Signal Process. 4(4), 239–244 (1994)

    Article  Google Scholar 

  9. T. Bose, D.P. Brown, Limit-cycles due to roundoff in state-space digital-filters. IEEE Trans. Acoust. Speech Signal Process. 38(8), 1460–1462 (1990)

    Article  Google Scholar 

  10. T. Bose, M.-Q. Chen, Stability of digital filters implemented with two’s complement truncation quantization. IEEE Trans. Signal Process. 40(1), 24–31 (1992)

    Article  MATH  Google Scholar 

  11. S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  12. H.J. Butterweck, J.H.F. Ritzerfeld, M.J. Werter, Finite wordlength effects in digital filters: a review, in: EUT report 88-E-205, Eindhoven University of Technology, Eindhoven, The Netherlands, 1988

  13. T.A.C.M. Claasen, W.F.G. Mecklenbräuker, J.B.H. Peek, Second-order digital filter with only one magnitude-truncation quantiser and having practically no limit cycles. Electron. Lett. 9(22), 531–532 (1973)

    Article  Google Scholar 

  14. T.A.C.M. Claasen, W.F.G. Mecklenbräuker, J.B.H. Peek, Effects of quantization and overflow in recursive digital filters. IEEE Trans. Acoust. Speech Signal Process. 24(6), 517–529 (1976)

    Article  MathSciNet  Google Scholar 

  15. M.N. Dao, D. Noll, Minimizing memory effects of a system. Math. Control Signals Syst. 27(1), 77–110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diksha, P. Kokil, H. Kar, Criterion for the limit cycle free state-space digital filters with external disturbances and quantization/overflow nonlinearities. Eng. Comput. 33(1), 64–73 (2016)

    Article  Google Scholar 

  17. K.T. Erickson, A.N. Michel, Stability analysis of fixed-point digital filters using computer generated Lyapunov functions-Part I: direct form and coupled form filters. IEEE Trans. Circuits Syst. 32(2), 113–132 (1985)

    Article  MATH  Google Scholar 

  18. P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox-for Use with MATLAB (The MATH Works Inc., Natick, MA, 1995)

    Google Scholar 

  19. H. Gao, J. Lam, C. Wang, Q. Wang, Hankel norm approximation of linear systems with time-varying delay: continuous and discrete cases. Int. J. Control 77(17), 1503–1520 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Gao, C. Wang, Delay-dependent robust H and L 2L filtering for a class of uncertain nonlinear time-delay systems. IEEE Trans. Autom. Control 48(9), 1661–1666 (2003)

    Article  MATH  Google Scholar 

  21. K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds. Int. J. Control 39(6), 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Kar, An LMI based criterion for the nonexistence of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. Digit. Signal Process. 17(3), 685–689 (2007)

    Article  Google Scholar 

  23. H. Kar, Asymptotic stability of fixed-point state-space digital filters with combinations of quantization and overflow nonlinearities. Signal Process. 91(11), 2667–2670 (2011)

    Article  MATH  Google Scholar 

  24. H. Kar, V. Singh, A new criterion for the overflow stability of second-order state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. I 45(3), 311–313 (1998)

    Article  Google Scholar 

  25. H. Kar, V. Singh, Stability analysis of 1-D and 2-D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities. IEEE Trans. Signal Process. 49(5), 1097–1105 (2001)

    Article  Google Scholar 

  26. H. Kar, V. Singh, Elimination of overflow oscillations in fixed-point state-space digital filters with saturation arithmetic: an LMI approach. IEEE Trans. Circuits Syst. II 51(1), 40–42 (2004)

    Article  Google Scholar 

  27. M.K. Kumar, P. Kokil, H. Kar, A new realizability condition for fixed-point state-space interfered digital filters using any combination of overflow and quantization nonlinearities. Circuits Syst. Signal Process. 36(8), 3289–3302 (2017)

    Article  MATH  Google Scholar 

  28. D. Liu, A.N. Michel, Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I 39(10), 798–807 (1992)

    Article  MATH  Google Scholar 

  29. W.L. Mills, C.T. Mullis, R.A. Roberts, Digital filter realizations without overflow oscillations. IEEE Trans. Acoust. Speech Signal Process. 26(4), 334–338 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Monteiro, R.V. Leuken, Integrated Circuit and System Design: Power and Timing Modeling, Optimization and Simulation (Springer, Berlin, 2010)

    Book  Google Scholar 

  31. T. Ooba, Asymptotic stability of two-dimensional discrete systems with saturation nonlinearities. IEEE Trans. Circuits Syst. I 60(1), 178–188 (2013)

    Article  MathSciNet  Google Scholar 

  32. P. Rani, P. Kokil, H. Kar, l 2l suppression of limit cycles in interfered digital filters with generalized overflow nonlinearities. Circuits Syst. Signal Process. 36(7), 2727–2741 (2017)

    Article  MATH  Google Scholar 

  33. M. Rehan, M. Tufail, M.T. Akhtar, On elimination of overflow oscillations in linear time-varying 2-D digital filters represented by a Roesser model. Signal Process. 127, 247–252 (2016)

    Article  Google Scholar 

  34. T. Shen, Z. Yuan, X. Wang, Stability analysis for digital filters with multiple saturation nonlinearities. Automatica 48(10), 2717–2720 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. P.K. Sim, K.K. Pang, Design criterion for zero-input asymptotic overflow-stability of recursive digital filters in the presence of quantization. Circuits Syst. Signal Process. 4(4), 485–502 (1985)

    Article  MATH  Google Scholar 

  36. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology (World Scientific Publishing, Singapore, 2002)

    Book  Google Scholar 

  37. B. Zhang, W.X. Zheng, S. Xu, Filtering of Markovian jump delay systems based on a new performance index. IEEE Trans. Circuits Syst. I 60(5), 1250–1263 (2013)

    Article  MathSciNet  Google Scholar 

  38. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, New Jersey, 1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and the anonymous reviewers for their constructive comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Rani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Kumar, M.K. & Kar, H. Hankel Norm Performance of Interfered Fixed-Point State-Space Digital Filters with Quantization/Overflow Nonlinearities. Circuits Syst Signal Process 38, 3762–3777 (2019). https://doi.org/10.1007/s00034-019-01027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01027-y

Keywords

Navigation