Skip to main content
Log in

V-Shaped Sparse Arrays for 2-D DOA Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a new sparse array geometry for 2-D (azimuth and elevation) direction-of-arrival (DOA) estimation. The proposed array geometry is V-shaped sparse array, and it is composed of two linear portions which are crossing each other. The degrees of freedom of the sparse array are enhanced by sparse sampling property. In this respect, V-shaped coprime (VCA) and V-shaped nested array (VNA) structures are developed. VCA can resolve both azimuth and elevation angles up to MN sources with \(2M + N -1\) sensors in each portion, and the total number of sensors is \(4M+2N-3\). VNA can resolve \(O(N^2)\) sources with 2N sensors. Instead of 2-D grid search, the proposed method computes 1-D search for azimuth and elevation angle estimation in a computational efficient way. In order to solve the pairing problem in 2-D scenario, the cross-covariance matrix of two portion is utilized and 2-D paired DOA estimation is performed. The performance of the proposed method is evaluated with numerical simulations, and it is shown that the proposed array geometries VCA and VNA can provide much less sensors as compared to the conventional coprime planar arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.I. Abramovich, D.A. Gray, A.Y. Gorokhov, N.K. Spencer, Positive-definite toeplitz completion in doa estimation for nonuniform linear antenna arrays. I. Fully augmentable arrays. IEEE Trans. Signal Process. 46(9), 2458–2471 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Y.I. Abramovich, N.K. Spencer, A.Y. Gorokhov, Positive-definite toeplitz completion in doa estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays. IEEE Trans. Signal Process. 47(6), 1502–1521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y.Y. Dong, C.X. Dong, Y.T. Zhu, G.Q. Zhao, S.Y. Liu, Two-dimensional doa estimation for l-shaped array with nested subarrays without pair matching. IET Signal Process. 10(9), 1112–1117 (2016)

    Article  Google Scholar 

  4. Y.Y. Dong, C.X. Dong, W. Liu, H. Chen, G.Q. Zhao, 2-D DOA estimation for l-shaped array with array aperture and snapshots extension techniques. IEEE Signal Process. Lett. 24(4), 495–499 (2017)

    Article  Google Scholar 

  5. Y.Y. Dong, C.X. Dong, J. Xu, G.Q. Zhao, Computationally efficient 2-D DOA estimation for l-shaped array with automatic pairing. IEEE Antennas Wirel. Propag. Lett. 15, 1669–1672 (2016)

    Article  Google Scholar 

  6. A.M. Elbir, L-shaped coprime array structures. IEEE Signal Process. Lett. (under review)

  7. T. Filik, T.E. Tuncer, Uniform and nonuniform v-shaped planar arrays for 2-D direction-of-arrival estimation. Radio Sci. 44(5), n/a-n/a (2009). (RS5006)

    Article  Google Scholar 

  8. B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39(3), 273–284 (1991)

    Article  Google Scholar 

  9. P. Hyberg, M. Jansson, B. Ottersten, Array interpolation and bias reduction. IEEE Trans. Signal Process. 52(10), 2711–2720 (2004)

    Article  MATH  Google Scholar 

  10. P. Hyberg, M. Jansson, B. Ottersten, Array interpolation and DOA MSE reduction. IEEE Trans. Signal Process. 53(12), 4464–4471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.G. Khatri, C. Radhakrishna Rao, Solutions to some functional equations and their applications to characterization of probability distributions. Sankhy Indian J. Stat. Ser. A (1961-2002) 30(2), 167–180 (1968)

    MathSciNet  MATH  Google Scholar 

  12. C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray music. IEEE Signal Process. Lett. 22(9), 1438–1442 (2015)

    Article  Google Scholar 

  13. R.O. Nielsen, Azimuth and elevation angle estimation with a three-dimensional array. IEEE J. Ocean. Eng. 19(1), 84–86 (1994)

    Article  Google Scholar 

  14. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Pal, P.P. Vaidyanathan, Coprime sampling and the musicalgorithm, in 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 289–294 (2011)

  16. S.U. Pillai, Y. Bar-Ness, F. Haber, A new approach to array geometry for improved spatial spectrum estimation. Proc. IEEE 73(10), 1522–1524 (1985)

    Article  Google Scholar 

  17. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  18. P. Stoica, R.L. Moses., Spectral Analysis of Signals (2005)

  19. N. Tayem, K. Majeed, A.A. Hussain, Two-dimensional doa estimation using cross-correlation matrix with l-shaped array. IEEE Antennas Wirel. Propag. Lett. 15, 1077–1080 (2016)

    Article  Google Scholar 

  20. T.E. Tuncer, T.K. Yasar, B. Friedlander, Direction of arrival estimation for nonuniform linear arrays by using array interpolation. Radio Sci. 42(4), RS4002 (2007)

    Article  Google Scholar 

  21. T.E. Tuncer, B. Friedlander, Classical and Modern Direction-of-Arrival Estimation (Academic Press, Cambridge, 2009)

    Google Scholar 

  22. M. Wax, T. Kailath, Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 33(2), 387–392 (1985)

    Article  MathSciNet  Google Scholar 

  23. Q. Wu, F. Sun, P. Lan, G. Ding, X. Zhang, Two-dimensional direction-of-arrival estimation for co-prime planar arrays: a partial spectral search approach. IEEE Sens. J. 16(14), 5660–5670 (2016)

    Article  Google Scholar 

  24. Y. Yang, Z. Zheng, H. Yang, J. Yang, Y. Ge., A novel 2-d doa estimation method via sparse l-shaped array, in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1865–1869 (2016)

  25. Z. Yang, L. Xie, On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans. Signal Process. 63(12), 3139–3153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Zheng, X. Zhang, H. Zhai, Generalized coprime planar array geometry for 2-D DOA estimation. IEEE Commun. Lett. 21(5), 1075–1078 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet M. Elbir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbir, A.M. V-Shaped Sparse Arrays for 2-D DOA Estimation. Circuits Syst Signal Process 38, 2792–2809 (2019). https://doi.org/10.1007/s00034-018-0991-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0991-5

Keywords

Navigation