Skip to main content
Log in

Fast and Stable Computation of the Charlier Moments and Their Inverses Using Digital Filters and Image Block Representation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we suggest a new method of fast and stable calculation of the discrete orthogonal moments of Charlier and their inverses. This method is meant to accelerate the computation time and improve the quality of images reconstruction. In this method, we have combined two main concepts. The first concept is the digital filters based on the Z-transform to accelerate the calculation process of the discrete orthogonal moments of Charlier. The second concept is the partitioning of the image into a set of blocks of fixed sizes where each block is processed independently. The significant reduction in the image space during partitioning makes it possible to represent the minute details of the image with only low orders of Charlier’s discrete orthogonal moments, which ensures the digital stability during the processing of the image. In order to demonstrate the efficiency, stability, and precision of our method compared to other existing methods, some simulations have been performed on different types of binary images and gray images with and without noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N.A. Abu, S.L. Wong, H. Rahmalan, S. Sahib, Fast and efficient 4 \(\times \) 4 Tchebichef moment image compression. Majlesi J. Electr. Eng. 4(314), 37–45 (2010)

    Google Scholar 

  2. H. El Fadili, K. Zenkouar, H. Qjidaa, Lapped block image analysis via the method of Legendre moments. EURASIP J. Appl. Signal Process. 2003(9), 902–913 (2003)

    Google Scholar 

  3. J. Flusser, T. Suk, B. Zitová, Moments and Moment Invariants in Pattern Recognition (Wiley, Chichester, 2009)

    Book  MATH  Google Scholar 

  4. M. Hatamian, A real-time two-dimensional moment generating algorithm and its single chip implementation. IEEE Trans. Acoust. Speech Signal Process. 34(3), 546–553 (1986)

    Article  Google Scholar 

  5. A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J. Electron. Imag. 23(1), 013026 (2014)

    Article  MATH  Google Scholar 

  6. A. Hmimid, M. Sayyouri, H. Qjidaa, Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn. 48, 509–521 (2015)

    Article  MATH  Google Scholar 

  7. B. Honarvar, J. Flusser, Fast computation of Krawtchouk moments. Inf. Sci. 288(20), 73–86 (2014)

    Article  MATH  Google Scholar 

  8. B. Honarvar, R. Paramesran, A new formulation of geometric moments from lower output values of digital filters. J. Circ. Syst. Comput. 23(04), 1450055 (2014)

    Article  Google Scholar 

  9. B. Honarvar, R. Paramesran, C.-L. Lim, The fast recursive computation of Tchebichef moment and its inverse transform based on Z-transform. Digit. Signal Process. 23(5), 1738–1746 (2013)

    Article  Google Scholar 

  10. H.S. Hsu, Moment preserving edge detection and its application to image data compression. Opt. Eng. 32, 1596–1608 (1993)

    Article  Google Scholar 

  11. http://www.dabi.temple.edu/~shape/MPEG7/dataset.html

  12. M.K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  13. R. Mukundan, S.H. Ong, P.A. Lee, Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis, Accurate and speedy computation of image Legendre moments for computer vision applications. Image Vis. Comput. 28(3), 414–423 (2010)

    Article  Google Scholar 

  15. M. Sayyouri, A. Hmimid, H. Qjidaa, A fast computation of novel set of Meixner invariant moments for image analysis. Circ. Syst. Signal Process. 2014, 1–26 (2014). https://doi.org/10.1007/s00034-014-9881-7

    MATH  Google Scholar 

  16. M. Sayyouri, A. Hmimid, H. Qjidaa, Image analysis using separable discrete moments of Charlier–Hahn. Multimed. Tools Appl. 75(1), 547–571 (2014)

    Article  MATH  Google Scholar 

  17. I.M. Spiliotis, B.G. Mertzios, Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7(11), 1609–1615 (1998)

    Article  Google Scholar 

  18. M.R. Teague, Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  19. X.Y. Wang, P.P. Niu, H.Y. Yang, C.P. Wang, A.L. Wang, A new robust color image watermarking using local quaternion exponent moments. Inf. Sci. 277, 731–754 (2014)

    Article  Google Scholar 

  20. G. Wang, S. Wang, Recursive computation of Tchebichef moment and its inverse transform. Pattern Recognit. 39(1), 47–56 (2006)

    Article  Google Scholar 

  21. W.-H. Wong, W.-C. Siu, Improved digital filter structure for fast moments computation. IEE Proc. Vis. Image Signal Process. 146(2), 73–79 (1999)

    Article  Google Scholar 

  22. P.T. Yap, R. Paramesra, S.H. Ong, Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  23. P.T. Yap, P. Raveendran, S.H. Ong, Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Int. 29(11), 2057–2062 (2007)

    Article  Google Scholar 

  24. Y. Zhang, S. Wang, Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio. Med. Mater. Eng. 26, 1283–1290 (2015)

    Article  Google Scholar 

  25. H. Zhu, M. Liu, H. Shu, H. Zhang, L. Luo, General form for obtaining discrete orthogonal moments. IET Image Process. 4(5), 335–352 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Karmouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmouni, H., Hmimid, A., Jahid, T. et al. Fast and Stable Computation of the Charlier Moments and Their Inverses Using Digital Filters and Image Block Representation. Circuits Syst Signal Process 37, 4015–4033 (2018). https://doi.org/10.1007/s00034-018-0755-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0755-2

Keywords

Navigation