Skip to main content
Log in

Sparse Least Logarithmic Absolute Difference Algorithm with Correntropy-Induced Metric Penalty

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Sparse adaptive filtering algorithms are utilized to exploit system sparsity as well as to mitigate interferences in many applications such as channel estimation and system identification. In order to improve the robustness of the sparse adaptive filtering, a novel adaptive filter is developed in this work by incorporating a correntropy-induced metric (CIM) constraint into the least logarithmic absolute difference (LLAD) algorithm. The CIM as an \(l_{0}\)-norm approximation exerts a zero attraction, and hence, the LLAD algorithm performs well with robustness against impulsive noises. Numerical simulation results show that the proposed algorithm may achieve much better performance than other robust and sparse adaptive filtering algorithms such as the least mean p-power algorithm with \(l_{1}\)-norm or reweighted \(l_{1}\)-norm constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.G. Baraniuk, E.J. Candès, R. Nowak, M. Vetterli, Compressive sampling. IEEE Signal Process. Mag. 25(2), 12–13 (2008)

    Article  Google Scholar 

  2. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles? Exact signal frequency information. IEEE Trans. Inf. Theory. 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  3. Y. Chen, Y. Gu, A.O. Hero III, A. Hero, A.O.H. Iii, Sparse LMS for system identification, in IEEE International Conference on Acoustics, Speech and Signal Processing (2009), pp. 3125–3128

  4. B. Chen, L. Xing, J. Liang, N. Zheng, J.C. Principe, Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

    Article  Google Scholar 

  5. B. Chen, J.C. Principe, Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 19(8), 491–494 (2012)

    Article  Google Scholar 

  6. B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)

    Article  Google Scholar 

  7. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Dumitrescu, A. Onose, P. Helin, I. Tabus, Greedy sparse RLS. IEEE Trans. Signal Process. 60(5), 2194–2207 (2012)

    Article  MathSciNet  Google Scholar 

  9. G. Gui, F. Adachi, Stable adaptive sparse filtering algorithms for estimating MIMO channels. IET Commun. 8(7), 1032–1040 (2014)

    Article  Google Scholar 

  10. G. Gui, L. Xu, F. Adachi, Variable step-size based sparse adaptive filtering algorithm for estimating channels in broadband wireless communication systems. EURASIP J. Wirel. Commun. Netw. 2014(1), 1–10 (2014)

    Article  Google Scholar 

  11. G. Gui, F. Adachi, Sparse Least Mean Fourth Filter with Zero-Attracting L1-Norm Constraint, in 9th International Conference on Information, Communications and Signal Processing (ICICS) (2013), pp. 1–5

  12. G. Gui, L. Xu, F. Adachi, Normalized least mean square-based adaptive sparse filtering algorithms for estimating multiple-input multiple-output channels. Wirel. Commun. Mob. Comput. 15(6), 1–10 (2014)

    Google Scholar 

  13. G. Gui, F. Adachi, Improved adaptive sparse channel estimation using least mean square algorithm. EURASIP J. Wirel. Commun. Netw. 2013(1), 1–18 (2013)

    Article  Google Scholar 

  14. W. Liu, P. Pokharel, J. Príncipe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  15. Mike Brookes, VOICEBOX: Speech Processing Toolbox for MATLAB. http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

  16. NRSC A. M. Preemphasis/Deemphasis and broadcast audio transmission bandwidth specifications (ANSI/EIA-549-88), Standard ANSI/EIA-549-88 (1988)

  17. S.C. Pei, C.C. Tseng, Least mean p-power error criterion for adaptive FIR filter. IEEE J. Sel. Areas Commun. 12(9), 1540–1547 (1994)

    Article  Google Scholar 

  18. K. Pelekanakis, M. Chitre, New sparse adaptive algorithms based on the natural gradient and the L0-norm. IEEE J. Ocean. Eng. 38(2), 323–332 (2013)

    Article  Google Scholar 

  19. G. Su, J. Jin, Y. Gu, J. Wang, Performance analysis of l0 norm constraint least mean square algorithm. IEEE Trans. Signal Process. 60(5), 2223–2235 (2012)

    Article  MathSciNet  Google Scholar 

  20. M. Shao, C.L. Nikias, Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)

    Article  Google Scholar 

  21. J. Shin, J. Yoo, P. Park, Variable step-size affine projection sign algorithm. Electron. Lett. 48(9), 483 (2012)

    Article  Google Scholar 

  22. M.O. Sayin, N.D. Vanli, S.S. Kozat, A novel family of adaptive filtering algorithms based on the logarithmic cost. IEEE Trans. Signal Process. 62(17), 4411–4424 (2013)

    Article  MathSciNet  Google Scholar 

  23. S. Seth, J.C. Principe, Compressed Signal Reconstruction Using the Correntropy Induced Metric, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2008), pp. 3845–3848

  24. A. Singh, J.C. Principe, Using Correntropy as Cost Function in Adaptive Filters, in Proceedings of International Joint Conference on Neural Networks (2009), pp. 2950–2955

  25. R. Tibshirani, Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  26. O. Taheri, S.A. Vorobyov, Sparse Channel Estimation with lp-Norm and Reweighted l1-Norm Penalized Least Mean Squares, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2011), pp. 2864–2867

  27. O. Taheri, S. Vorobyov, Decimated Least Mean Squares for Frequency Sparse Channel Estimation, in IEEE International Conference on Acoustics, Speech and Signal (ICASSP) (2012), pp. 3181–3184

  28. F. Wen, System identification using reweighted zero attracting least absolute deviation algorithm. 1(1) (2011). arXiv:1110.2907

  29. F. Wen, Diffusion least-mean p-power algorithms for distributed estimation in alpha-stable noise environments. Electron. Lett. 49(21), 1355–1356 (2013)

    Article  Google Scholar 

  30. S. Zhao, B. Chen, J.C. Principe, Kernel Adaptive Filtering with Maximum Correntropy Criterion, in Proceedings of International Joint Conference on Neural Networks (2011), pp. 2012–2017

Download references

Acknowledgments

The authors would like to thank Dr. M. N. S. Swamy, the Editor-in-Chief for his help in improving the presentation of the paper. This work was supported by 973 Program (No. 2015CB351703) and National Natural Science Foundation of China Grants (No. 61372152, No. 61401069) as well as Japan Society for the Promotion of Science (JSPS) research Grants (No. 26889050, No. 15K06072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badong Chen.

Appendix

Appendix

In this appendix, we give the evaluations of the computational complexity of (6). First, we rewrite the algorithm as

$$\begin{aligned} W(n+1)= & {} W(n)+\frac{\mu \tau e(n)}{1+\tau |e(n)|}X(n)-\frac{\rho }{M\sigma ^{3}\sqrt{2\pi }}W(n).^{*}\exp \left( {-\frac{W(n).^{*} W(n)}{2\sigma ^{2}}} \right) \nonumber \\= & {} W(n)+A(n)+B(n), \end{aligned}$$
(14)

where \(A(n)=\frac{\mu \tau e(n)}{1+\tau |e(n)|}X(n)\), \(B(n)=-\frac{\rho }{M\sigma ^{3}\sqrt{2\pi }}W(n).^{*}\exp \left( {-\frac{W(n).^{*} W(n)}{2\sigma ^{2}}} \right) \).

The detailed evaluations of the computational complexity per iteration are then shown in Table 2.

Table 2 Evaluations of the computational complexity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Chen, B., Zhao, H. et al. Sparse Least Logarithmic Absolute Difference Algorithm with Correntropy-Induced Metric Penalty. Circuits Syst Signal Process 35, 1077–1089 (2016). https://doi.org/10.1007/s00034-015-0098-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0098-1

Keywords

Navigation