Skip to main content
Log in

Optimal Pilot Pattern Design for Compressed Sensing-Based Sparse Channel Estimation in OFDM Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The frequency selective channel estimation problem in orthogonal frequency division multiplexing (OFDM) systems is investigated from the perspective of compressed sensing (CS). By minimizing the mutual coherence or the modified mutual coherence of the measurement matrix in CS theory, two criteria for optimizing the pilot pattern for CS-based channel estimation are proposed. Simulation results show that using the pilot pattern designed by either of the two criteria gives a much better performance than using other pilot patterns in terms of the mean-squared error of the channel estimate as well as the bit error rate of the system. Moreover, the optimal pilot pattern designed by minimizing the modified mutual coherence offers a larger performance gain than that obtained by minimizing the mutual coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bajwa, J. Haupt, A. Sayeed, R. Nowak, Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010)

    Article  Google Scholar 

  2. R.G. Baranluk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  3. C.R. Berger, S. Zhou, W. Chen, P. Willett, Sparse channel estimation for OFDM: Over-complete dictionaries and super-resolution, in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Perugia, Italy, pp. 196–200 (2009)

    Chapter  Google Scholar 

  4. C.R. Berger, S. Zhou, J.C. Preisig, P. Willett, Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans. Signal Process. 58(3), 1708–1721 (2010)

    Article  MathSciNet  Google Scholar 

  5. X. Cai, G.B. Giannakis, Error probability minimization pilots for OFDM with M-PSK modulation over Rayleigh-fading channels. IEEE Trans. Veh. Technol. 53(1), 146–155 (2004)

    Article  Google Scholar 

  6. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  Google Scholar 

  7. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  8. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  9. E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  10. S. Coleri, M. Ergen, A. Puri, A. Bahai, Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Trans. Broadcast. 48(3), 223–229 (2002)

    Article  Google Scholar 

  11. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  12. D.L. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  13. X. He, R. Song, K. Zhou, Study of compressive sensing based sparse channel estimation in OFDM systems. J. Nanjing Univ. Posts Telecommun. Nat. Sci. 30(2), 60–65 (2010)

    Google Scholar 

  14. D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  15. J.L. Paredes, G.R. Arce, Z. Wang, Ultra-Wideband compressed sensing: channel estimation. IEEE J. Sel. Top. Signal Process. 1(3), 383–395 (2007)

    Article  Google Scholar 

  16. M.R. Raghavendra, K. Giridhar, Improving channel estimation in OFDM systems for sparse multipath channels. IEEE Signal Process. Lett. 12(1), 52–55 (2005)

    Article  Google Scholar 

  17. G. Taubock, F. Hlawatsch, A compressed sensing technique for OFDM channel estimation in mobile environments: exploiting channel sparsity for reducing pilots, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP’08), Las Vegas, NV (2008), pp. 2885–2888

    Chapter  Google Scholar 

  18. G. Taubock, F. Hlawatsch, D. Eiwen, H. Raunhut, Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing. IEEE J. Sel. Top. Signal Process. 4(2), 255–271 (2010)

    Article  Google Scholar 

  19. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  20. J.A. Tropp, D. Needell, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. C.J. Wu, D.W. Lin, Sparse channel estimation for OFDM transmission based on representative subspace fitting, in Proc. IEEE 61st Veh. Technol. Conf., vol. 1 (2005), pp. 495–499

    Chapter  Google Scholar 

  22. W. Zhang, X. Xia, P.C. Ching, Optimal training and pilot pattern design for OFDM systems in Rayleigh fading. IEEE Trans. Broadcast. 52(4), 505–514 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongfang Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Song, R. & Zhu, WP. Optimal Pilot Pattern Design for Compressed Sensing-Based Sparse Channel Estimation in OFDM Systems. Circuits Syst Signal Process 31, 1379–1395 (2012). https://doi.org/10.1007/s00034-011-9378-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9378-6

Keywords

Navigation