Skip to main content
Log in

Existence and concentration behavior of solutions for the logarithmic Schrödinger–Poisson system with steep potential

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the following logarithmic Schrödinger–Poisson system:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda V(x)u+q(x)\phi u=u \log u^2,~&{}\text {in}~{\mathbb {R}}^{3},\\ -\Delta \phi = q(x)u^2,~&{}\text {in}~{\mathbb {R}}^{3}, \end{array}\right. } \end{aligned}$$

where \(\lambda >0\), \(V(x)\in C({\mathbb {R}}^3,{\mathbb {R}})\) and \(q(x)\ge 0\) for all \(x\in {\mathbb {R}}^3\). Under the suitable conditions on potential V(x) and q(x), by proceeding a new penalization scheme to the nonlocal term \(\phi \), combining with a new version of Minimax method, we prove the existence of positive solution \(u_{\lambda }\in H^1({\mathbb {R}}^3)\) of the above system for \(\lambda >0\) large enough. Moreover, we also investigate the concentration behavior of \(\{u_{\lambda }\}\) as \(\lambda \rightarrow +\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Ji, C.: Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well. Sci. China Math. 64, 1577–1598 (2021)

  2. Alves, C.O., de Morais Filho, D.C., Figueiredo, G.M.: On concentration of solution to a Schrödinger logarithmic equation with deepening potential well. Math. Methods Appl. Sci. 42, 4862–4875 (2019)

  3. Alves, C.O., Gonçalves, J.V.A., Santos, J.A.: Existence of solution for a partial differential inclusion in \({\mathbb{R} }^N\) with steep potential well. Z. Angew. Math. Phys. 70, 41 (2019)

  4. Alves, C.O., Ji, C.: Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method. Calc. Var. Partial. Differ. Equ. 59, 21 (2020)

    Article  MATH  Google Scholar 

  5. Alves, C.O., De Morais Filho, D.C.: Existence and concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 69, 144 (2018)

    Article  MATH  Google Scholar 

  6. Azzollini, A., D’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 779–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benmlih, K.: Stationary solutions for a Schrödinger–Poisson system in \({\mathbb{R}}^3\). In: Proceedings of the 2002 Fez Conference on Partial Differential Equations, Electronic Journal of Differential Equations Conference, vol. 9, pp. 65–76 (2002)

  9. Brézis, H., Kato, T.: Remarks on Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  MATH  Google Scholar 

  11. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. d’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207–5216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory. Math. Comput. Model. 32, 1377–1393 (2000)

    Article  MATH  Google Scholar 

  14. Del Pino, M., Dolbeault, J.: The optimal Euclidean \(L^p\)-Sobolev logarithmic inequality. J. Funct. Anal. 197, 151–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, M.: Positive solutions for the Schrödinger–Poisson system with steep potential well. 16 July 2020. arXiv:2007.08088v1 [math.AP]

  16. Del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in undounded domain. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  17. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1983)

  18. Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437, 241–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, H.F., Luo, X.: Existence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well. J. Math. Anal. Appl. 467, 893–915 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, Y.S., Zhou, H.S.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)

    Article  MATH  Google Scholar 

  21. Li, N., He, X.: Existence and multiplicity results for some Schrödinger–Poisson system with critical growth. J. Math. Anal. Appl. 488, 124071 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions P.L.: The Concentration-Compactness Principle in the Calculus of Variations. The Locally Compact Case, Part 2 Anal. Inst. H. Poincaré, Sect. C 1, pp. 223–253 (1984)

  23. Peng, X.Q., Jia, G., Huang, C.: Sign-changing solutions for modified Schrödinger–Poisson system with general nonlinearity. Complex Var. Elliptic Equ. (2021). https://doi.org/10.1080/17476933.2021.1947258

    Article  MATH  Google Scholar 

  24. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rabinowitz, P.H.: Minimax Methods in Critical Points Theory with Application to Differential Equations, CBMS Regional Conference Series in Mathematics, Vol. 65. Am. Math. Soc. Providence (1986)

  26. Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Cal. Var. Partial Differ. Equ. 54, 585–597 (2015)

    Article  MATH  Google Scholar 

  27. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  28. Sun, J.T., Wu, T.F.: On the nonlinear Schrödinger–Poisson systems with sign-changing potential. Z. Angew. Math. Phys. 66, 1649–1669 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, J.T., Wu, T.F.: Steep potential well may help Kirchhoff type equations to generate multiple solutions. Nonlinear Anal. 190, 111609 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, J.T., Wu, T.F., Wu, Y.Z.: Existence of nontrivial solution for Schrödinger–Poisson systems with indefinite steep potential well. Z. Angew. Math. Phys. 68, 73 (2017)

    Article  MATH  Google Scholar 

  31. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger equation. Cal. Var. Partial Differ. Equ. 56, 33 (2017)

    Article  MATH  Google Scholar 

  33. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston Inc., Boston (1996)

    Google Scholar 

  34. Xie, Q.L., Ma, S.W.: Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential. J. Math. Anal. Appl. 431, 1210–1223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yin, L.F., Wu, X.P., Tang, C.L.: Existence and concentration of ground state solutions for critical Schrödinger–Poisson system with steep potential well. Appl. Math. Comput. 374, 125035 (2020)

  36. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)

    Article  MATH  Google Scholar 

  37. Zhang, X., Ma, S.W.: Multi-bump solutions of Schrödinger–Poisson equations with steep potential well. Z. Angew. Math. Phys. 66, 1615–1631 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zloshchastiev, K.G.: Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X.Q. Peng is supported by the China Scholarship Council (No. 202208310170). G. Jia is supported by the National Natural Science Foundation of China (No. 11171220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China, Grant No. 11171220.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Jia, G. Existence and concentration behavior of solutions for the logarithmic Schrödinger–Poisson system with steep potential. Z. Angew. Math. Phys. 74, 29 (2023). https://doi.org/10.1007/s00033-022-01922-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01922-6

Keywords

Mathematics Subject Classification

Navigation