Skip to main content
Log in

Two stability results for the Kawahara equation with a time-delayed boundary control

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the Kawahara equation in a bounded interval and with a delay term in one of the boundary conditions. Using two different approaches, we prove that this system is exponentially stable under a condition on the length of the spatial domain. Specifically, the first result is obtained by introducing a suitable energy functional and using Lyapunov’s approach, to ensure that the energy of the Kawahara system goes to 0 exponentially as \(t \rightarrow \infty \). The second result is achieved by employing a compactness–uniqueness argument, which reduces our study to prove an observability inequality. Furthermore, the novelty of this work is to characterize the critical lengths phenomenon for this equation by showing that the stability results hold whenever the spatial length is related to the Möbius transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See for instance [1, 6, 32] and references therein, for a rigorous justification of various asymptotic models for surface and internal waves.

  2. \(\Vert u\Vert ^{2}_{L^{2}(0,L)} \le \frac{L^{2}}{\pi ^{2}}\Vert \partial _xu\Vert _{L^{2}(0,L)}\) for \(u \in H_{0}^{2}(0,L)\).

References

  1. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araruna, F.D., Capistrano-Filho, R.A., Doronin, G.G.: Energy decay for the modified Kawahara equation posed in a bounded domain. J. Math. Anal. Appl. 385, 743–756 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baudouin, L., Crépeau, E., Valein, J.: Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback. IEEE Trans. Automat. Control. 64, 1403–1414 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berloff, N., Howard, L.: Solitary and periodic solutions of nonlinear nonintegrable equations. Stud. Appl. Math. 99(1), 1–24 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, A.: Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett. 22, 208–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bona, J.L., Lannes, D., Saut, J.-C.: Asymptotic models for internal waves. J. Math. Pures Appl. 89(9), 538–566 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bona, J.L., Sun, S.M., Zhang, B.-Y.: A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28, 1391–1436 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bona, J.L., Sun, S.M., Zhang, B.Y.: A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain II. J. Differ. Equ. 247(9), 2558–2596 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Capistrano-Filho, R. A., de Jesus, I. M.: Massera’s theorems for a higher order dispersive system, arXiv:2205.12200 [math.AP] (2022)

  10. Capistrano-Filho, R.A., de Gomes, M.M.S.: Well-posedness and controllability of Kawahara equation in weighted Sobolev spaces. Nonlinear Anal. 207, 1–24 (2011)

    MathSciNet  Google Scholar 

  11. Capistrano-Filho, R. A., Gonzalez Martinez, V. H.: Stabilization results for delayed fifth order KdV-type equation in a bounded domain, arXiv:2112.14854 [math.AP] (2021)

  12. Capistrano-Filho, R.A., de Sousa, L.S.: Control results with overdetermination condition for higher order dispersive system. J. Math. Anal. Appl. 506, 1–22 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Capistrano-Filho, R. A., de Sousa, L. S., Gallego, F. A.: Control of Kawahara equation with overdetermination condition: the unbounded cases, arXiv:2110.08803 [math.AP] (2021)

  14. Chentouf, B.: Well-posedness and exponential stability of the Kawahara equation with a time-delayed localized damping. Math. Methods Appl. Sci. 45, 10312–10330 (2022). https://doi.org/10.1002/mma.8369

    Article  MathSciNet  Google Scholar 

  15. Chen, M.: Internal controllability of the Kawahara equation on a bounded domain. Nonlinear Anal. 185, 356–373 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coclite, G.M., di Ruvo, L.: On the classical solutions for a Rosenau-Korteweg-deVries-Kawahara type equation. Asymptot. Anal. 129, 51–73 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Coclite, G.M., di Ruvo, L.: Wellposedness of the classical solutions for a Kawahara-Korteweg-de Vries type equation. J. Evol. Equ. 21, 625–651 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coclite, G.M., di Ruvo, L.: Convergence results related to the modified Kawahara equation. Boll. Unione Mat. Ital. 8, 265–286 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui, S., Tao, S.: Strichartz estimates for dispersive equations and solvability of the Kawahara equation. J. Math. Anal. Appl. 304, 683–702 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Doronin, G.G., Larkin, N.A.: Kawahara equation in a quarter-plane and in a finite domain. Bol. Soc. Parana. Mat. 25, 9–16 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Doronin, G.G., Larkin, N.A.: Boundary value problems for the stationary Kawahara equation. Nonlinear Anal 69, 1655–1665 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Doronin, G.G., Larkin, N.A.: Kawahara equation in a bounded domain. Discrete Contin. Dyn. Syst. Ser. B 10, 783–799 (2008)

    MathSciNet  MATH  Google Scholar 

  23. dos Santos, A.L.C., da Silva, P.N., Vasconcellos, C.F.: Entire functions related to stationary solutions of the Kawahara equation. Electron. J. Differ. Equ. 43, 13 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Faminskii, A.V., Larkin, N.A.: Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron. J. Differ. Equ. 2010(1), 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Hirayama, H.: Local well-posedness for the periodic higher order KdV type equations. NoDEA Nonlinear Differ. Equ. Appl. 19, 677–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hasimoto, H.:Water waves, their dispersion and steeping, Kagaku (Science). 40, 401–408 [Japanese] (1970)

  27. Hunter, J.K., Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Phys. D 32, 253–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Isaza, P., Linares, F., Ponce, G.: Decay properties for solutions of fifth order nonlinear dispersive equations. J. Differ. Equ. 258, 764–795 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin, L.: Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation. Math. Comput. Model. 49, 573–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kato, T.: Low regularity well-posedness for the periodic Kawahara equation. Differ. Integr. Equ. 25, 1011–1036 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)

    Article  Google Scholar 

  32. Lannes, D.: The water waves problem. Mathematical analysis and asymptotics. In Mathematical Surveys and Monographs, 188. American Mathematical Society, Providence, pp. 321 (2013)

  33. Larkin, N.A.: Correct initial boundary value problems for dispersive equations. J. Math. Anal. Appl. 344, 1079–1092 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Larkin, N.A., Simoes, M.H.: The Kawahara equation on bounded intervals and on a half-line. Nonlinear Anal. TMA 127, 397–412 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  37. Polat, N., Kaya, D., Tutalar, H.I.: An analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method. Appl. Math. Comput. 179, 466–472 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Rosier, L.: Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2, 33–55 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    Article  MATH  Google Scholar 

  40. Vasconcellos, C.F., Silva, P.N.: Stabilization of the linear Kawahara equation with localized damping. Asymptot. Anal. 58, 229–252 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Vasconcellos, C.F., Silva, P.N.: Stabilization of the linear Kawahara equation with localized damping. Asymptot. Anal. 66, 119–124 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Vasconcellos, C.F., Silva, P.N.: Stabilization of the Kawahara equation with localized damping. ESAIM Control Optim. Calc. Var. 17, 102–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12, 770–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yusufoglu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine method. Chaos Solitons Fractals 37, 1193–1197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, D.: Non-homogeneous initial-boundary-value problem of the fifth-order Korteweg-de Vries equation with a nonlinear dispersive term. J. Math. Anal. Appl. 497, Paper 124848, 1–28 (2021)

Download references

Acknowledgements

The authors are grateful to the editor and the two anonymous reviewers for their constructive comments and valuable remarks. Capistrano-Filho was supported by CNPq grant 307808/2021-1, CAPES grants 88881.311964/2018-01 and 88881.520205/2020-01, MATHAMSUD grant 21-MATH-03 and Propesqi (UFPE). De Sousa acknowledges support from CAPES-Brazil and CNPq-Brazil. Gonzalez Martinez was supported by FACEPE grants BFP-0065-1.01/21 and BFP-0099-1.01/22. This work is part of the PhD thesis of de Sousa at the Department of Mathematics of the Universidade Federal de Pernambuco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boumediène Chentouf.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capistrano-Filho, R.d.A., Chentouf, B., de Sousa, L.S. et al. Two stability results for the Kawahara equation with a time-delayed boundary control. Z. Angew. Math. Phys. 74, 16 (2023). https://doi.org/10.1007/s00033-022-01897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01897-4

Keywords

Mathematics Subject Classification

Navigation