Skip to main content
Log in

Well-posedness and regularity of fractional Rayleigh–Stokes problems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The purpose of this paper is to analyse the Rayleigh–Stokes problem for a heated generalized second-grade fluid with Riemann–Liouville fractional derivative. By virtue of the Galerkin method, the existence, uniqueness and regularity of weak solutions in \(L^{\infty }(0,b;L^2(\Omega ))\) \(\bigcap L^2(0,b;H_0^1(\Omega ))\) of the proposed problem are obtained. Furthermore, we prove an improved regularity result of weak solutions in the case of \(h\in H^2(\Omega )\) and \(f\in L^2(0,b;L^2(\Omega ))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Affili, E., Valdinoci, E.: Decay estimates for evolution equations with classical and fractional time-derivatives. J. Differ. Equ. 266(7), 4027–4060 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bao, N.T., Caraballo, T., Tuan, N.H., Zhou, Y.: Existence and regularity results for terminal value problem for nonlinear fractional wave equations. Nonlinearity 34, 1448–1502 (2021)

    Article  MathSciNet  Google Scholar 

  3. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131(1), 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  4. Dong, H., Kim, D.: \(L_p\)-estimates for time fractional parabolic equations in divergence form with measurable coefficients. J. Funct. Anal. 278, 108338 (2020)

    Article  MathSciNet  Google Scholar 

  5. Fetecau, C.: The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid. C. R. Acad. Sci. Paris 335(11), 979–984 (2002)

    Article  MathSciNet  Google Scholar 

  6. Fetecau, C., Fetecau, C.: The Rayleigh–Stokes problem for heated second grade fluids. Int. J. Non-Linear Mech. 37(6), 1011–1015 (2002)

    Article  Google Scholar 

  7. Fetecau, C., Jamil, M., Fetecau, C., Vieru, D.: The Rayleigh–Stokes problem for an edge in a generalized Oldroyd-B fluid. Z. Angew. Math. Phys. 60(5), 921–933 (2009)

    Article  MathSciNet  Google Scholar 

  8. Fetecau, C., Zierep, J.: The Rayleigh–Stokes-problem for a Maxwell fluid. Z. Angew. Math. Phys. 54(6), 1086–1093 (2003)

    Article  MathSciNet  Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

  10. Liu, S., Wu, X., Zhou, X.F., Jiang, W.: Asymptotical stability of Riemann–Liouville fractional nonlinear systems. Nonlinear Dyn. 86, 65–71 (2016)

    Article  MathSciNet  Google Scholar 

  11. Mustapha, K., Schotzau, D.: Well-posedness of \(hp\)-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  Google Scholar 

  12. Nadeem, S., Asghar, S., Hayat, T., Hussain, M.: The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid. Meccanica 43(5), 495–504 (2008)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, A.T., Luu, V.C.H., Nguyen, H.L., Nguyen, H.T., Nguyen, V.T.: Identification of source term for the Rayleigh–Stokes problem with Gaussian random noise. Math. Methods Appl. Sci. 41, 5593–5601 (2018)

    Article  MathSciNet  Google Scholar 

  14. Nguyen, H.L., Nguyen, H.T., Zhou, Y.: Regularity of the solution for a final value problem for the Rayleigh–Stokes equation. Math. Methods Appl. Sci. 42, 3481–3495 (2019)

    Article  MathSciNet  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Salah, F., Aziz, Z.A., Ching, D.L.C.: New exact solution for Rayleigh–Stokes problem of Maxwell fluid in a porous medium and rotating frame. Results Phys. 1(1), 9–12 (2011)

    Article  Google Scholar 

  17. Shen, F., Tan, W., Zhao, Y., Masuoka, T.: The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7(5), 1072–1080 (2006)

    Article  MathSciNet  Google Scholar 

  18. Tuan, N.H., Zhou, Y., Thach, T.N., Can, N.H.: Initial inverse problem for the nonlinear fractional Rayleigh–Stokes equation with random discrete data. Commun. Nonlinear Sci. Numer. Simul. 78, 104873 (2019)

    Article  MathSciNet  Google Scholar 

  19. Wang, J.R., Feckan, M., Zhou, Y.: Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bull. Sci. Math. 141, 727–746 (2017)

    Article  MathSciNet  Google Scholar 

  20. Wang, J.N., Zhou, Y., He, J.W.: Existence and regularization of solutions for nonlinear fractional Rayleigh-Stokes problem with final condition. Math. Methods Appl. Sci. 44, 13493–13508 (2021)

    Article  MathSciNet  Google Scholar 

  21. Xue, C., Nie, J.: Exact solutions of the Rayleigh–Stokes problem for a heated generalized second grade fluid in a porous half-space. Appl. Math. Model 33(1), 524–531 (2009)

    Article  MathSciNet  Google Scholar 

  22. Zacher, R.: A De Giorgi–Nash type theorem for time fractional diffusion equations. Math. Ann. 356(1), 99–146 (2013)

    Article  MathSciNet  Google Scholar 

  23. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  24. Zhou, Y., He, J.W.: Well-posedness and regularity for fractional damped wave equations. Monatsh. Math. 194(2), 425–458 (2021)

    Article  MathSciNet  Google Scholar 

  25. Zhou, Y., He, J.W., Ahmad, B., Tuan, N.H.: Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhou, Y., Wang, J.N.: The nonlinear Rayleigh–Stokes problem with Riemann-Liouville fractional derivative. Math. Methods Appl. Sci. 44, 2431–2438 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zhuang, P., Liu, Q.: Numerical method of Rayleigh–Stokes problem for heated generalized second grade fluid with fractional derivative. Appl. Math. Mech. 30(12), 1533–1546 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Project supported by National Natural Science Foundation of China (12070396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.N., Zhou, Y., Alsaedi, A. et al. Well-posedness and regularity of fractional Rayleigh–Stokes problems. Z. Angew. Math. Phys. 73, 161 (2022). https://doi.org/10.1007/s00033-022-01808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01808-7

Keywords

Mathematics Subject Classification

Navigation