Skip to main content
Log in

Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the wellposedness of history-state-based variable-order linear time-fractional diffusion equations in multiple space dimensions. We also prove that the regularity of their solutions depends on the behavior of the variable order at the initial time \(t=0\), in addition to the usual smoothness assumptions. More precisely, we prove that their solutions have full regularity (i.e., the solutions can achieve high-order smoothness under high-order regularity assumptions of the data) as their integer-order analogs if the variable order has an integer limit at \(t=0\) or exhibits singular behaviors at \(t=0\) like in the case of the constant-order time-fractional diffusion equations if the variable order has a non-integer value at \(t=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Elsevier, San Diego (2003)

    MATH  Google Scholar 

  2. Baeumer, B., Kovács, M., Meerschaert, M.M., Sankaranarayanan, H.: Boundary conditions for fractional diffusion. J Comput. Appl. Math. 339, 414–430 (2018)

    Article  MathSciNet  Google Scholar 

  3. Coclite, G.M., Dipierro, S., Maddalena, F., Valdinoci, E.: Wellposedness of a nonlinear peridynamic model. Nonlinearity 32, 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  4. Coclite, G.M., Dipierro, S., Maddalena, F., Valdinoci, E.: Singularity formation in fractional Burgers’ equations. J. Nonlinear Sci. (2020). https://doi.org/10.1007/s00332-020-09608-x

  5. Coclite, G.M., Risebro, N.H.: A difference method for the McKean–Vlasov equation. Z. Angew. Math. Phys. (2019). https://doi.org/10.1007/s00033-019-1196-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, V 19, American Mathematical Society, Rhode Island (1998)

  8. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier B.V., Amsterdam (2006)

    Book  Google Scholar 

  9. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  Google Scholar 

  10. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    Article  MathSciNet  Google Scholar 

  11. McLean, W., Mustapha, K., Ali, R., Knio, O.: Well-posedness of time-fractional advection-diffusion-reaction equations. Fract. Calc. Appl. Anal. 22, 918–944 (2012)

    Article  MathSciNet  Google Scholar 

  12. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics (2011)

  13. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  14. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  15. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1–12 (2003)

    Google Scholar 

  16. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  17. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    Article  MathSciNet  Google Scholar 

  19. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A: Stat. Mech. Appl. 388, 4586–4592 (2009)

    Article  Google Scholar 

  20. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics, vol. 1054. Springer, New York (1984)

    MATH  Google Scholar 

  21. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  Google Scholar 

  22. Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 58, 330–352 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by the OSD/ARO MURI Grant W911NF-15-1-0562 and by the National Science Foundation under Grant DMS-1620194.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wang, H. Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations. Z. Angew. Math. Phys. 71, 34 (2020). https://doi.org/10.1007/s00033-020-1253-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1253-5

Keywords

Mathematics Subject Classification

Navigation