Skip to main content
Log in

Effects of density-suppressed motility in a two-dimensional chemotaxis model arising from tumor invasion

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the global stability of the following density-suppressed motility system

$$\begin{aligned} \left\{ \begin{array}{ll} u_{t}=\Delta (\varphi (v)u), &{} x\in \Omega ,\quad t>0,\\ v_{t} =\Delta v+wz, &{} x\in \Omega ,\quad t>0,\\ w_{t}=-wz, &{} x\in \Omega ,\quad t>0,\\ z_{t}=\Delta z-z+u, &{} x\in \Omega ,\quad t>0 \end{array} \right. \end{aligned}$$

in a bounded domain \(\Omega \subset \mathbb {R}^{2}\) with smooth boundary, where the motility function \(\varphi (v)\) is positive. If \(\varphi (v)\) has the lower-upper bound, we can obtain that this system possesses a unique bounded classical solution. Moreover, we can obtain that the global solution (uvwz) will exponentially converge to the equilibrium \((\overline{u}_{0},\overline{v}_{0}+\overline{w}_{0},0,\overline{u}_{0})\) as \(t\rightarrow +\infty \), where \(\overline{f}_{0}=\frac{1}{|\Omega |}\int _{\Omega }f_{0}(x)\mathrm{d}x\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaplain, M., Anderson, A.: Mathematical modelling of tissue invasion. In: Cancer Modelling and Simulation, pp. 269–297. Math. Biol. Med. Ser., Chapman&Hall/CRC, Boca Raton (2003)

  2. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    Article  MathSciNet  Google Scholar 

  3. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Fujie, K., Ito, A., Yokota, T.: Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type. Adv. Math. Sci. Appl. 24, 67–84 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Keller, E., Segel, L.: Initial of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  6. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Herrero, M.A., Velázquez, J.L.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. Ser. Int. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the finite time. Methods Appl. Anal. 8, 349–367 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  MathSciNet  Google Scholar 

  11. Mizoguchi, N., Winkler, M.: Blow-up in the two-dimensional Keller-Segel system, preprint

  12. Jin, H.Y., Xiang, T.: Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity 29, 3579–3596 (2016)

    Article  MathSciNet  Google Scholar 

  13. Jin, H.Y., Liu, Z.R., Shi, S.J.: Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal. RWA 44, 18–39 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ladyžhenskaya, O.A., Solonnikov, V.A., Uraiceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, AMS, pROVIDENCE r. I (1968)

  15. Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 39, 394–404 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. NoDEA Nonlinear Differ. Equ. Appl. 24, 49 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lou, Y., Winkler, M.: Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates. Commun. Partial Differ. Equ. 40, 1905–1941 (2015)

    Article  MathSciNet  Google Scholar 

  18. Li, D., Mu, C.L., Zheng, P.: Boundedness and large time behavior in a quasilinear chemotaxis model for tumor invasion. Math. Models Methods Appl. Sci. 28, 1413–1451 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liu, C., et al.: Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011)

    Article  Google Scholar 

  20. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)

    Article  Google Scholar 

  21. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real World Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  23. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  24. Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Methods Appl. Sci. 25, 911–925 (2002)

    Article  MathSciNet  Google Scholar 

  25. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    Article  MathSciNet  Google Scholar 

  26. Tao, Y., Winkler, M.: Effects of signal-dependent motilities in a Keller–Segel-type reaction–diffusion system. Math. Models Meth. Appl. Sci. 27, 1645–1683 (2017)

    Article  MathSciNet  Google Scholar 

  27. Yoon, C., Kim, Y.-J.: Global existence and aggregation in a Keller–Segel model with Fokker–Planck diffusion. Acta Appl. Math. 149, 101–123 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by NSF-CQCSTC (Grant No. cstc2019jcyj-msxmX0390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wu, C. Effects of density-suppressed motility in a two-dimensional chemotaxis model arising from tumor invasion. Z. Angew. Math. Phys. 71, 153 (2020). https://doi.org/10.1007/s00033-020-01378-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01378-6

Keywords

AMS Subject Classification (2010)

Navigation