Skip to main content
Log in

Boundedness in a high-dimensional forager–exploiter model with nonlinear resource consumption by two species

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We investigate a forager–exploiter model in a high-dimensional smooth bounded domain with zero-flux Neumann boundary condition:

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{cc} {\displaystyle u_{t}=\Delta u-\chi _{1}\nabla \cdot (u\nabla w),}&{}{}\quad \,\,\,\,x\in \Omega ,\,t>0,\\ {\displaystyle v_{t}=\Delta v-\chi _{2}\nabla \cdot (v\nabla u),}&{}{}\quad \,\,\,\,x\in \Omega ,\,t>0,\\ w_{t}=\mathrm {d}\Delta w-\frac{u+v}{(1+u+v)^{\gamma }}w-\mu w+r(x,t),&{}{}\quad \,\,\,\,x\in \Omega ,\,t>0.\end{array}\right. \end{aligned} \end{aligned}$$

This model characterizes the social interactions between the two species, foragers and exploiters, denoted by u and v, searching for the same food resource w. The positive taxis effects \(\chi _{1}\) and \(\chi _{2}\) reflect doubly tactic modelling hypothesis that the foragers chase food resource directly, while the exploiters follow after them. The spatio-temporal dynamics of food resource include its reaction-diffusion at rate d, natural reduction at rate \(\mu \), renewed production at rate r and especially its nonlinear consumption by the two species. For a positive constant \(\gamma \) weighing the nonlinear sensitivity of resource consumption rate, we find a sufficient condition such that the system possesses a unique nonnegative global bounded classical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H., Triebel H. (eds.) Functional Space, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., Vol. 133, pp. 9–126 (1993)

  2. Black, T.: Global generalized solutions to a forager-exploiter model with superlinear degradation and their eventual regularity properties (2019). arXiv:1911.02321v2

  3. Cao, X.: Global solutions of some chemotaxis systems. PhD. thesis (2018)

  4. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. Ser. A 35, 1891–1904 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cao, X.: Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z. Angew. Math. Phys. 67, 11 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chaplain, M.A.J., Tello, J.I.: On the stability of homogeneous steady states of a chemotaxis system with logistic growth term. Appl. Math. Lett. 57, 1–6 (2016)

    Article  MathSciNet  Google Scholar 

  7. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  8. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolicparabolic type on non-convex bounded domains. J. Differ. Equ. 256, 299–3010 (2014)

    Article  Google Scholar 

  9. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instaility. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  10. Lankeit, J., Wang, Y.L.: Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete Contin. Dyn. Syst. 37, 6099–6121 (2017)

    Article  MathSciNet  Google Scholar 

  11. Li, G., Tao, Y.: Analysis of a chemotaxis-convection model of capillary-sprout growth during tumor angiogenesis. J. Math. Anal. Appl. 481, 123–474 (2020)

    Article  MathSciNet  Google Scholar 

  12. Liu, J., Zheng, J., Wang, Y.: Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. Z. Angew. Math. Phys. 67, 21 (2016)

    Article  MathSciNet  Google Scholar 

  13. Liu, Y.: Global existence and boundedness of classical solutions to a forager-exploiter model with volume-filling effects. Nonlinear Anal. Real World Appl. 50, 519–531 (2019)

    Article  MathSciNet  Google Scholar 

  14. Tania, N., Vanderlei, B., Heath, J.P., Edelstein-Keshet, L.: Role of social interactions in dynamic patterns of resource patches and forager aggregation. Proc. Natl. Acad. Sci. USA 109, 11228–11233 (2012)

    Article  Google Scholar 

  15. Tao, Y., Winkler, M.: Chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    Article  MathSciNet  Google Scholar 

  16. Tao, Y., Winkler, M.: Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 422–4250 (2015)

    Article  Google Scholar 

  17. Tao, Y., Winkler, M.: Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food. Math. Models Methods Appl. Sci. 29, 2151–2182 (2019)

    Article  MathSciNet  Google Scholar 

  18. Wang, J., Wang, M.: Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis. Z. Angew. Math. Phys. 69, 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wang, J., Wang. M.: Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources (2020). arXiv:1911.12946

  20. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  21. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  22. Winkler, M.: Boundedness in a chemotaxis-May—Nowak model for virus dynamics with mildly saturated chemotactic sensitivity. Acta Appl. Math. 224, 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  23. Winkler, M.: Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions. Math. Models Methods Appl. Sci. 29, 373–418 (2019)

    Article  MathSciNet  Google Scholar 

  24. Wu, S., Shi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J. Differ. Equ. 260, 5847–5874 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Q., Li, Y.: Global boundedness of solutions to a two-species chemotaxis system. Z. Angew. Math. Phys. 66, 83–93 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehong Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhuang, Y. Boundedness in a high-dimensional forager–exploiter model with nonlinear resource consumption by two species. Z. Angew. Math. Phys. 71, 151 (2020). https://doi.org/10.1007/s00033-020-01376-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01376-8

Mathematics Subject Classification

Keywords

Navigation