Skip to main content
Log in

Exact solutions to Euler equation and Navier–Stokes equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Lie symmetry analysis method and Bäcklund transformation method are proposed for finding similarity reduction and exact solutions to Euler equation and Navier–Stokes equation, respectively. By using symmetry reduction method, we reduce nonlinear partial differential equation to nonlinear ordinary differential equation. The infinitesimal generators and the soliton solutions to the Euler equation are obtained by Lie symmetry analysis method. Furthermore, the Bäcklund transformation of the Navier–Stokes equation is proposed to obtain the exact solution. We obtain the exact solutions to Navier–Stokes equation on background flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, New York (1987)

    Google Scholar 

  2. Norbury, J., Roulstone, I.: Large-Scale Atmosphere–Ocean Dynamics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  3. Bresch, D., Desjardins, B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87(1), 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, F., Li, X., Cui, Y., Wu, Y.: A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. Z. Angew. Math. Phys. 68(6), 125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goncharov, Y.: On existence and uniqueness of classical solutions to Euler equations in a rotating cylinder. Eur. J. Mech. B/Fluids 25(3), 267–278 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. Henri Poincare Nonlinear Anal. 28(5), 727–730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coutand, D., Hole, J., Shkoller, S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45(6), 3690–3767 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhai, C., Zhang, T.: Global well-posedness to the 3-D incompressible inhomogeneous Navier–Stokes equations with a class of large velocity. J. Math. Phys. 56(9), 537–586 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, H., Li, Y., Zhai, X.: On the well-posedness of 2-D incompressible Navier–Stokes equations with variable viscosity in critical spaces. J. Differ. Equ. 260(8), 6604–6637 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shibata, Y., Murata, M.: On the global well-posedness for the compressible Navier–Stokes equations with slip boundary condition. J. Differ. Equ. 260(7), 5761–5795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ablowitz, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Chen, Y., Teo, E.: A rotating black lens solution in five dimensions. Phys. Rev. D 78(6), 909–930 (2008)

    MathSciNet  Google Scholar 

  13. Ma, W., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, W., Yong, X., Zhang, H.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75(1), 289–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, J., Ma, W., Qin, Z.: Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 8(3), 427–436 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Dong, H., Zhang, X., Yang, H.: Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation. Comput. Math. Appl. 73(2), 246–252 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, H., Ma, W.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74(6), 1399–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, J., Ma, W.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74(3), 591–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levi, D.: On a new Darboux transformation for the construction of exact solutions of the Schrödinger equation. Inverse Probl. 4(1), 165 (1988)

    Article  MATH  Google Scholar 

  20. Xu, X.: A deformed reduced semi-discrete Kaup–Newell equation, the related integrable family and Darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Zhao, Q., Li, X., Liu, F.: Two integrable lattice hierarchies and their respective Darboux transformations. Appl. Math. Comput. 219(10), 5693–5705 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Ha, J., Zhang, H., Zhao, Q.: Exact solutions for a Dirac-type equation with N-fold Darboux transformation. J. Appl. Anal. Comput. 9(1), 200–210 (2019)

    MathSciNet  Google Scholar 

  23. Zedan, H.A.: Exact solutions for the generalized KdV equation by using Bäcklund transformations. J. Frankl. Inst. 348(8), 1751–1768 (2011)

    Article  MATH  Google Scholar 

  24. Jiang, Y., Tian, B., Liu, W., Li, M., Wang, P., Sun, K.: Solitons, Bäcklund transformation, and Lax pair for the (2+1)-dimensional Boiti–Leon–Pempinelli equation for the water waves. J. Math. Phys. 51(9), 240 (2010)

    Article  MATH  Google Scholar 

  25. Feng, Q., Gao, Y., Meng, X., Yu, X., Sun, Z., Xu, T., Tian, B.: N-soliton-like solutions and Bäcklund transformations for a non-isospectral and variable-coeffcient modified Korteweg-de Vries equation. Int. J. Mod. Phys. B 25(05), 723–733 (2011)

    Article  MATH  Google Scholar 

  26. Zhu, S., Song, J.: Residual symmetries, nth Bäcklund transformation and interaction solutions for (2+1)-dimensional generalized Broer-Kaup equations. Appl. Math. Lett. 83, 33–39 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y., Song, Y., Cheng, L., Ge, J., Wei, W.: Exact solutions and Painlev analysis of a new (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 68(68), 445–458 (2011)

    MATH  Google Scholar 

  28. Liu, H., Li, J., Liu, L.: Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations. Nonlinear Dyn. 59(59), 497–502 (2009)

    MATH  Google Scholar 

  29. Wang, M., Li, X., Zhang, J.: The \(({G}^{\prime }/{G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  30. Lu, C., Fu, C., Yang, H.: Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, 104–116 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Fu, L., Chen, Y., Yang, H.: Time-space fractional coupled generalized Zakharov–Kuznetsov equations set for Rossby solitary waves in two-layer fluids. Mathematics 7(1), 41 (2019)

    Article  Google Scholar 

  32. Zhang, L., Khalique, M.: Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discrete and Contin. Dyn. Syst. Ser. S 11, 777–790 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Miao, Q., Xin, X., Chen, Y.: Nonlocal symmetries and explicit solutions of the AKNS system. Appl. Math. Lett. 28(2), 7–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cheng, W., Qiu, D., Yu, B.: CRE solvability, nonlocal symmetry and exact interaction solutions of the fifth-order modified Korteweg-de Vries equation. Commun. Theor. Phys. 67(6), 637–642 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, J., Ma, Z., Hu, Y.: Nonlocal symmetry, Darboux transformation and soliton–cnoidal wave interaction solution for the shallow water wave equation. J. Math. Anal. Appl. 460, 987–1003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jafari, H., Tajadodi, H., Baleanu, D.: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn. 9(2), 021019 (2014)

    Article  Google Scholar 

  37. Zhao, X., Tang, D.: A new note on a homogeneous balance method. Phys. Lett. A 297(1), 59–67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirotas bilinear method and by the tanh–coth method. Appl. Math. Comput. 190(1), 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Cesar, A., Gmez, S.: Exact solution of the Bogoyavlenskii equation using the improved tanh–coth method. Nonlinear Dyn. 70(1), 13–24 (2015)

    Google Scholar 

  40. Wazwaz, A.M.: New travelling wave solutions of different physical structures to generalized BBM equation. Phys. Lett. A 355(4), 358–362 (2006)

    Article  Google Scholar 

  41. Guo, M., Dong, H., Liu, J., Yang, H.: The time-fractional mZK equation for gravity solitary waves and solutions using sech–tanh and radial basic function method. Nonlinear Anal. Model. Control 24(1), 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Lou, S.: Symmetry analysis and exact solutions of the (2+1)-dimensional sine-Gordon system. J. Math. Phys. 41(9), 6509–6524 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tang, X., Shukla, P.Kant: Lie symmetry analysis of the quantum Zakharov equations. Phys. Scr. 76(762035), 665–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, H., Li, J., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J. Comput. Appl. Math. 228(1), 1–9 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dong, H., Chen, T., Chen, L., Zhang, Y.: A new integrable symplectic map and the Lie point symmetry associated with nonlinear lattice equations. J. Nonlinear Sci. Appl. 9, 5107–5118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ren, Y., Tao, M., Dong, H., Yang, H.: Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach. Adv. Differ. Equ. 2019(1), 13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lou, S., Jia, M., Huang, F., Tang, X.: Bäcklund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation. Int. J. Theor. Phys. 46(8), 2082–2095 (2007)

    Article  MATH  Google Scholar 

  48. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the Nature Science Foundation of China (No. 11701134) and the Science and Technology Plan Project of the Educational Department of Shandong Province of China (Nos. J16LI12, J15LI54 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiulan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, X. & Zhao, Q. Exact solutions to Euler equation and Navier–Stokes equation. Z. Angew. Math. Phys. 70, 43 (2019). https://doi.org/10.1007/s00033-019-1088-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1088-0

Mathematics Subject Classification

Keywords

Navigation