Skip to main content
Log in

Traveling wave solutions of a nonlocal dispersal predator–prey model with spatiotemporal delay

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and nonexistence of traveling wave solution for the nonlocal dispersal predator–prey model with spatiotemporal delay. This model incorporates the Leslie–Gower functional response into the Lotka–Volterra-type system, and both species obey the logistic growth. We explore the existence of traveling wave solution for \(c\ge c^{\star }\) by using the upper-lower solutions and the Schauder’s fixed point theorem. Furthermore, the nonexistence of traveling wave solution for \(c<c^{\star }\) is discussed by means of the comparison principle. The novelty of this work lies in the construction of upper-lower solutions and the proof of the complete continuity of operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Omari, J., Gourley, S.A.: Monotone traveling fronts in age-structured reaction–diffusion model of a single species. J. Math. Biol. 45, 294–312 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ashwin, P.B., Bartuccelli, M.V., Bridges, T.J., Gourley, S.A.: Travelling fronts for the KPP equation with spatio-temporal delay. Z. Angew. Math. Phys. 53, 103–122 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  Google Scholar 

  4. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theor. Biol. 136, 57–66 (1989)

    Article  MathSciNet  Google Scholar 

  5. Britton, N.F.: Spatial structures and periodic travelling waves in an integrodifferential reaction–diffusion population model. SIAM J. Appl. Math. 50, 1663–1688 (1990)

    Article  MathSciNet  Google Scholar 

  6. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  Google Scholar 

  7. Chen, X.: Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Y.-Y., Guo, J.-S., Yao, C.-H.: Traveling wave solutions for a continuous and discrete diffusive predator–prey model. J. Math. Anal. Appl. 445, 212–239 (2017)

    Article  MathSciNet  Google Scholar 

  9. Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Academic Press, New York (1973)

    MATH  Google Scholar 

  10. Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. R. Soc. Edinb. Sect. A 137, 727–755 (2007)

    Article  MathSciNet  Google Scholar 

  11. Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244, 3080–3118 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ducrot, A., Langlais, M.: A singular reaction–diffusion system modelling prey–predator interactions: Invasion and co-extinction waves. J. Differ. Equ. 253, 502–532 (2012)

    Article  MathSciNet  Google Scholar 

  13. Faria, T., Huang, W., Wu, J.: Travelling waves for delayed reaction–diffusion equations with global response. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462, 229–261 (2006)

    Article  MathSciNet  Google Scholar 

  14. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28. Springer, Berlin (1979)

    MATH  Google Scholar 

  15. Gourley, S.A., Chaplain, M.A.J., Davidson, F.A.: Spatio-temporal pattern formation in a nonlocal reaction–diffusion equation. Dyn. Syst. 16, 173–192 (2001)

    Article  MathSciNet  Google Scholar 

  16. Gourley, S.A., Wu, J.: Delayed nonlocal diffusive systems in biological invasion and disease spread. In: Zhao, X.Q., Zou, X. (eds.) Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, vol. 48, American Mathematical Society, Providence, pp. 137–200 (2006)

  17. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)

    Article  Google Scholar 

  18. Hsu, S.B., Huang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  Google Scholar 

  19. Jin, Y., Zhao, X.-Q.: Spatial dynamics of a periodic population model with dispersal. Nonlinearity 22, 1167–1189 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kuang, Y.: Delay Differential Equations with Applications in Population Biology, Mathematics in Science and Engineering, vol. 191. Academic Press, Boston (1993)

    Google Scholar 

  21. Li, W.-T., Ruan, S., Wang, Z.-C.: On the diffusive Nicholson’s blowflies equation with nonlocal delay. J. Nonlinear Sci. 17, 505–525 (2007)

    Article  MathSciNet  Google Scholar 

  22. Li, W.-T., Yang, F.-Y.: Traveling waves for a nonlocal dispersal SIR model with standard incidence. J. Integral Equ. Appl. 26, 243–273 (2014)

    Article  MathSciNet  Google Scholar 

  23. Lin, G., Ruan, S.: Traveling wave solutions for delayed reaction–diffusion systems and applications to diffusive Lotka–Volterra competition models with distributed delays. J. Dyn. Differ. Equ. 26, 583–605 (2014)

    Article  MathSciNet  Google Scholar 

  24. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York (2003)

    MATH  Google Scholar 

  25. Nindjin, A.F., Aziz-Alaoui, M.A., Cadivel, M.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Nonlinear Anal. Real World Appl. 7, 1104–1118 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pan, S.: Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity. J. Math. Anal. Appl. 346, 415–424 (2008)

    Article  MathSciNet  Google Scholar 

  27. Pan, S.: Traveling wave solutions in nonlocal dispersal models with nonlocal delays. J. Korean Math. Soc. 51, 703–719 (2014)

    Article  MathSciNet  Google Scholar 

  28. Pan, S., Li, W.-T., Lin, G.: Travelling wave fronts in nonlocal delayed reaction–diffusion systems and applications. Z. Angew. Math. Phys. 60, 377–392 (2009)

    Article  MathSciNet  Google Scholar 

  29. Renshaw, E.: Modelling Biological Populations in Space and Time. Cambridge Studies in Mathematical Biology, vol. 11. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  30. Ruan, S.: Spatial-temporal dynamics in nonlocal epidemiological models. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds.) Mathematics for Life Science and Medicine. Biological and Medical Physics, Biomedical Engineering, pp. 97–122. Springer, Berlin (2007)

    Google Scholar 

  31. Sáez, E., González-Olivares, E.: Dynamics of a predator–prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  MathSciNet  Google Scholar 

  32. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  33. Tanner, J.T.: The stability and the intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Article  Google Scholar 

  34. Wang, Z.-C., Li, W.-T., Ruan, S.: Travelling wave fronts in reaction–diffusion systems with spatio-temporal delays. J. Differ. Equ. 222, 185–232 (2006)

    Article  MathSciNet  Google Scholar 

  35. Wang, J.-B., Li, W.-T., Yang, F.-Y.: Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun. Nonlinear Sci. Numer. Simul. 27, 136–152 (2015)

    Article  MathSciNet  Google Scholar 

  36. Wang, W., Ma, W.B.: Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model. J. Math. Anal. Appl. 457, 868–889 (2018)

    Article  MathSciNet  Google Scholar 

  37. Wollkind, D.J., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions on fruit flies. Bull. Math. Biol. 50, 379–409 (1988)

    Article  MathSciNet  Google Scholar 

  38. Xu, Z., Xiao, D.: Regular traveling waves for a nonlocal diffusion equation. J. Differ. Equ. 258, 191–223 (2015)

    Article  MathSciNet  Google Scholar 

  39. Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45, 925–953 (2009)

    Article  MathSciNet  Google Scholar 

  40. Yagisita, H.: Existence of traveling waves for a nonlocal monostable equation: an abstract approach. Publ. Res. Inst. Math. Sci. 45, 955–979 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the School of Mathematical and Statistical Sciences of University of Texas Rio Grande Valley for its hospitality and generous support during his visiting from September 2017 to September 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Zhao or Zhaosheng Feng.

Additional information

This work is supported by National Science Foundation of China under 11601029 and China Scholarship Council Award.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, R., Zhao, X. et al. Traveling wave solutions of a nonlocal dispersal predator–prey model with spatiotemporal delay. Z. Angew. Math. Phys. 69, 146 (2018). https://doi.org/10.1007/s00033-018-1041-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-1041-7

Keywords

Mathematics Subject Classification

Navigation