Skip to main content
Log in

Long-time behavior for suspension bridge equations with time delay

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider suspension bridge equations with time delay of the form

$$\begin{aligned} u_{tt}(x,t) + \Delta ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- \tau ) + f(u(x,t)) = g(x). \end{aligned}$$

Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, Y.: On the suspension bridge equations and the relevant problems. Doctoral Thesis (2001)

  2. Chueshov, I., Lasiecka, I.: Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping. J. Differ. Equ. 233, 42–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations: Well-Posednedss and Long-Time Dynamics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  4. Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26, 697–713 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jorge Silva, M.A., Ma, T.F.: Long-time dynamics for a class of Kirchhoff models with memory. J. Math. Phys. 54, 012505 (2013)

    Article  MathSciNet  Google Scholar 

  6. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065–1082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspeinsion bridge: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, Q.F., Wang, S.H., Zhong, C.K.: Necessary and sufficient conditions for the existence of global attractor for semigroup and application. Indiana Univ. Math. J. 51, 1541–1559 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma, Q., Xu, L.: Random attractors for the extensible suspension bridge equation with white noise. Comput. Math. Appl. 70, 2895–2903 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ma, Q.Z., Zhong, C.K.: Existence of global attractors for the suspension bridge equations. J. Sichuan Univ. 43, 271–276 (2006)

    MathSciNet  MATH  Google Scholar 

  11. McKenna, P.J., Walter, W.: Nonlinear oscillation in a suspension bridge. Nonlinear Anal. 39, 731–743 (2000)

    Article  MathSciNet  Google Scholar 

  12. Mustafa, M.I.: Asymptotic behavior of second sound thermoelasticity with internal time-varying delay. Z. Angew. Math. Phys. 64, 1353–1362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nicaise, S., Pignotti, C.: Interior feedback stabilization of wave equations with time dependent delay. Electron. J. Differ. Equ. 2011(41), 20 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Park, J.Y., Kang, J.R.: Pullbacd \({\cal{D}}\)-attractors for non-autonomous suspensioin bridge equtions. Nonlinear Anal. 71, 4618–4623 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Park, J.Y., Kang, J.R.: Global attractors for the suspension bridge equations with nonlinear damping. Q. Appl. Math. 69, 465–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Park, S.H.: Energy decay for a von Karman equation with time-varying delay. Appl. Math. Lett. 55, 10–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Suh, I.H., Bien, Z.: Use of time dealy action in the controller desing. IEEE Trans. Autom. Control 25, 600–603 (1980)

    Article  MATH  Google Scholar 

  19. Yang, L., Zhong, C.K.: Global attractor for plate equation with nonlinear damping. Nonlinear Anal. 69, 3802–3810 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, Z.: Existence and energy decy of solutions for the Euler–Bernoulli viscoelastic equation with a delay. Z. Angew. Math. Phys. 66, 727–745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhong, C.K., Ma, Q.Z., Sun, C.Y.: Existence of strong solutions and global attractors for the suspension bridge equations. Nonlinear Anal. 67, 442–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hye Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH. Long-time behavior for suspension bridge equations with time delay. Z. Angew. Math. Phys. 69, 45 (2018). https://doi.org/10.1007/s00033-018-0934-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0934-9

Mathematics Subject Classification

Keywords

Navigation