Skip to main content
Log in

Solutions of evolutionary \({\varvec{p(x)}}\)-Laplacian equation based on the weighted variable exponent space

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The paper studies the equation

$$\begin{aligned} u_t= {\text {div}} (a(x)\left| \nabla u \right| ^{p(x) - 2}\nabla u) +\sum _{i=1}^N\frac{\partial b_i(u)}{\partial x_i},\ \ (x,t) \in \Omega \times (0,T), \end{aligned}$$

with the boundary degeneracy due to \(a(x)\mid _{x\in \partial \Omega }=0\), and \(\Omega \subset \mathbb {R}^{N}\), where N is a positive integer. By the theory of the weighted variable exponent Sobolev spaces, the well posedness of weak solutions of this equation is discussed. The novelty of our results lies in the fact that under certain conditions, if a(x) satisfies \(\int \nolimits _{\Omega }a^{-\frac{1}{p(x)-1}}\mathrm{d}x<\infty \), the global stability of weak solutions can be established without any boundary value condition. While \(\int \nolimits _{\Omega }a^{-\frac{1}{p(x)-1}}\mathrm{d}x=\infty \), the local stability of weak solutions can be obtained without any boundary value condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. 53, 355–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antontsev, S., Shmarev, S.: Parabolic equations with double variable nonlinearities. Math. Comput. Simul. 81, 2018–2032 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lian, S., Gao, W., Yuan, H., Cao, C.: Existence of solutions to an initial Dirichlet problem of evolutional p(x)-Laplace equations. Ann. Inst. Henri Poincare Anal. Nonlinear 29, 377–399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhan, H., Wen, J.: Evolutionary \(p(x)\)-Laplacian equation free from the limitation of the boundary value. Electron. J. Differ. Equ. 143, 1–13 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Zhan, H.: The stability of evolutionary \(p(x)-\)Laplacian equation. Bound. Value Probl. 2017, 13 (2017). https://doi.org/10.1186/s13661-016-0742-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhan, H.: The solutions of a hyperbolic-parabolic mixed type equation on half-space domain. J. Differ. Equ. 259, 1449–1481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavalheiro, A.C.: Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Parana. Mat. (3s) 26, 117–132 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Ho, K., Sim, I.: On degenerate \(p(x)-\)Laplacian equations involving critical growth with two parameters. Nonlinear Anal. 132, 95–114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhikov, V.V.: On the density of smooth functions in Sobolev-Orlicz spaces, it Otdel. Mat. Inst. Steklov.(POMI), 310, 67–81 (2004), translation in J. Math. Sci. (N.Y.), 132, 285–294 (2006)

  12. Fan, X.L., Zhao, D.: On the spaces \({L^{p(x)}(\Omega )}\) and \({W^{m, p(x)}}\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kovacik, O., Rakosnik, J.: On spaces \({L^{p(x)}}\) and \({W^{k, p(x)}}\). Czechoslov. Math. J. 41, 592–618 (1991)

    MATH  Google Scholar 

  14. Zhan, H.: The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary. Bound. Value Probl. 2016, 178 (2016). https://doi.org/10.1186/s13661-016-0684-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Feng, Z. Solutions of evolutionary \({\varvec{p(x)}}\)-Laplacian equation based on the weighted variable exponent space. Z. Angew. Math. Phys. 68, 134 (2017). https://doi.org/10.1007/s00033-017-0885-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0885-6

Mathematics Subject Classification

Keywords

Navigation