Skip to main content
Log in

Uniqueness of large positive solutions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We establish the uniqueness of the positive solution of the singular problem (1.1) through some standard comparison techniques involving the maximum principle. Our proofs do not invoke to the blow-up rates of the solutions, as in most of the specialized literature. We give two different types of results according to the geometrical properties of \(\Omega \) and the regularity of \(\partial \Omega \). Even in the autonomous case, our theorems are extremely sharp extensions of all existing results. Precisely, when \(\mathfrak {a}(x)\equiv 1\), it is shown that the monotonicity and superadditivity of f(u) with constant \(C\ge 0\) entail the uniqueness; f is said to be superadditive with constant \(C\ge 0\) if

$$\begin{aligned} f(a+b) \ge f(a) + f(b) - C \quad \hbox {for all}\;\; a, b \ge 0. \end{aligned}$$

This condition, introduced by Marcus and Véron (J Evol Equ 3:637–652, 2004), weakens all previous sufficient conditions for uniqueness, as it will become apparent in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcón, S., Díaz, G., Rey, J.M.: Large solutions of elliptic semilinear equations in the borderline case. An exhaustive and intrinsic point of view. J. Math. Anal. Appl. 431, 365–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandle, C.: Asymptotic behavior of large solutions of elliptic equations. Ann. Univ. Craiova Ser. Mat. Inform. 32, 1–8 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Bandle, C., Marcus, M.: Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. D’Analyse Math. 58, 9–24 (1992)

    Article  MATH  Google Scholar 

  4. Bandle, C., Marcus, M.: Dependence of blow-up rate of large solutions of semilinear elliptic equations, on the curvature of the boundary. Complex Var. Theory Appl. 49, 555–570 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bieberbach, L.: \(\Delta u = e^u\) und die automorphem Funktionen. Math. Ann. 77, 173–212 (1916)

    Article  MathSciNet  Google Scholar 

  6. Cano-Casanova, S., López-Gómez, J.: Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half line. J. Differ. Equ. 244, 3180–3203 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cano-Casanova, S., López-Gómez, J.: Blow-up rates of radially symmetric large solutions. J. Math. Anal. Appl. 352, 166–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cirstea, F.C., Radulescu, V.: Existence and uniqueness of blow-up solutions for a class of logistic equations. Commun. Contemp. Math. 4, 559–586 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cirstea, F.C., Radulescu, V.: Solutions with boundary blow-up for a class of nonlinear elliptic problems. Houst. J. Math. 29, 821–829 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Costin, O., Dupaigne, L., Goubet, O.: Uniqueness of large solutions. J. Math. Anal. Appl. 395, 806–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Y.: Order Structure and Topological Methods in Nonlinear Partial Differential Equations. World Scientific Publishing, Singapore (2006)

    Book  MATH  Google Scholar 

  12. Dumont, S., Dupaigne, L., Goubet, O., Radulescu, V.: Back to the Keller–Osserman condition for boundary blow-up solutions. Adv. Nonlinear Stud. 7, 271–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupaigne, L., Ghergu, M., Goubet, O., Warnault, G.: Entire large solutions for semilinear elliptic equations. J. Differ. Equ. 253, 2224–2251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faber, C.: Beweis das unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisdörmige den tiefsten Grundton gibt. Sitzungsber. Bayer. Akad. der Wiss. Math. Phys. 169–171 (1923)

  15. Feng, H., Zhong, C.: Boundary behavior of solutions for the degenerate logistic type elliptic problem with boundary blow-up. Nonlinear Anal. 73, 3472–3478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, P.: Remarks on large solutions of a class of semilinear elliptic equations. J. Math. Anal. Appl. 356, 393–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghergu, M., Radulescu, V.: Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37. The Clarendon Press, Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  18. Garcia-Melián, J.: Uniqueness of positive solutions for a boundary value problem. J. Math. Anal. Appl. 360, 530–536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, S.: Asymptotic behavior of boundary blow-up solutions to elliptic equations. Z. Angew. Math. Phys. (2016). doi:10.1007/s00033-015-0606-y

    MathSciNet  MATH  Google Scholar 

  20. Huang, S., Tian, Q., Zhang, S., Xi, J., Fan, Z.: The exact blow-up rates of large solutions for semilinear elliptic equations. Nonlinear Anal. 73, 3489–3501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, S., Li, W., Tian, Q., Mi, Y.: General uniqueness results and blow-up rates for large solutions of elliptic equations. Proc. R. Soc. Edinb. Sect. A 142(4), 825–837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keller, J.B.: On solutions of \(\Delta u = f(u)\). Commun. Pure Appl. Math. X, 503–510 (1957)

    Article  MATH  Google Scholar 

  23. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 91, 97–100 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  24. López-Gómez, J.: The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems. J. Differ. Equ. 127, 263–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. López-Gómez, J.: The boundary blow-up rate of large solutions. J. Differ. Equ. 195, 25–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. López-Gómez, J.: Uniqueness of large solutions for a class of radially symmetric elliptic equations. In: Cano-Casanova, S., López-Gómez, J., Mora-Corral, C. (eds.) Spectral Theory and Nonlinear Analysis with Applications to Spatial Ecology, pp. 75–110. World Scientific, Singapore (2005)

    Chapter  Google Scholar 

  27. López-Gómez, J.: Metasolutions: malthus versus verhulst in population dynamics. A dream of Volterra. In: Chipot, M., Quittner, P. (eds) Handbook of Differential Equations Stationary Partial Differential Equations, vol. 2, Chapter 4, pp. 211–309. Elsevier Science B. V., North Holland, Amsterdam (2005)

  28. López-Gómez, J.: Optimal uniqueness theorems and exact blow-up rates of large solutions. J. Differ. Equ. 224, 385–439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. López-Gómez, J.: Uniqueness of radially symmetric large solutions. Discret. Contin. Dyn. Syst. In: Proceedings of the Sixth AIMS Conference, pp. 677–686. Poitiers, Supplement (2007)

  30. López-Gómez, J.: Linear Second Order Elliptic Operators. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  31. López-Gómez, J.: Metasolutions of Parabolic Problems in Population Dynamics. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  32. Marcus, M., Véron, L.: Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. Henri Poincaré 14, 237–274 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marcus, M., Véron, L.: Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 3, 637–652 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Osserman, R.: On the inequality \(\Delta u \ge f(u)\). Pac. J. Math. 7, 1641–1647 (1957)

    Article  MATH  Google Scholar 

  35. Ouyang, T., Xie, Z.: The uniqueness of blow-up for radially symmetric semilinear elliptic equations. Nonlinear Anal. 64, 2129–2142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ouyang, T., Xie, Z.: The exact boundary blow-up rate of large solutions for semilinear elliptic problems. Nonlinear Anal. 68, 2791–2800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rademacher, H.: Einige besondere probleme der partiellen Differentialgleichungen. In: Frank, P., von Mises, R. (eds.) Die Differential und Integralgleichungen der Mechanik und Physik I, 2nd edn, pp. 838–845. Rosenberg Publishing, New York (1943)

    Google Scholar 

  38. Radulescu, V.: Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities. In: Chipot, M. (ed.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, Chapter 7, pp. 483–591. Elsevier Science B. V., North-Holland, Amsterdam (2007)

  39. Repovs, D.: Asymptotics for singular solutions of qusilinear elliptic equations with an absorption term. J. Math. Anal. Appl. 395, 78–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Véron, L.: Semilinear elliptic equations with uniform blow up on the boundary. J. D’Analyse Math. 59, 231–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Walter, W.: A theorem on elliptic differential inequalities and applications to gradient bounds. Math. Z. 200, 293–299 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xie, Z.: Uniqueness and blow-up rate of large solutions for elliptic equation \(-\Delta u=\lambda u-b(x)h(u)\). J. Differ. Equ. 247, 344–363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Z., Ma, Y., Mi, L., Li, X.: Blow-up rates of large solutions for elliptic equations. J. Differ. Equ. 249, 180–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Mi, L.: Blow-up rates of large solutions for semilinear elliptic equations. Commun. Pure Appl. Anal. 10, 1733–1745 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Maire.

Additional information

Supported by the Ministry of Economy and Competitiveness under Research Grant MTM2015-65899-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gómez, J., Maire, L. Uniqueness of large positive solutions. Z. Angew. Math. Phys. 68, 86 (2017). https://doi.org/10.1007/s00033-017-0829-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0829-1

Mathematics Subject Classification

Keywords

Navigation