Skip to main content
Log in

Inertial effect on frequency synchronization for the second-order Kuramoto model with local coupling

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the influence of the inertial effect on frequency synchronization in an ensemble of Kuramoto oscillators with finite inertia and symmetric and connected interactions. We present sufficient conditions in terms of coupling strength, algebraic connectivity, natural frequencies, and the inertial term to guarantee the occurrence of frequency synchronization. We also make a comparison with the existing conditions proposed for the first-order Kuramoto model and conclude that the inertial effect, if appropriately small, has little influence on frequency synchronization as long as the initial phase configurations are distributed in a half circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., et al.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  2. Acebrón, J.A., Bonilla, L.L., Spigler, R.: Synchronization in populations of globally coupled oscillators with inertial effects. Phys. Rev. E 62, 3437–3454 (2000)

    Article  MathSciNet  Google Scholar 

  3. Choi, Y.P., Ha, S.Y., Yun, S.B.: Complete synchronization of Kuramoto oscillators with finite inertia. Phys. D 240, 32–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, Y.P., et al.: Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow. J. Differ. Equ. 257, 2591–2621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    Article  MathSciNet  Google Scholar 

  6. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dynam. Sys. 10, 1070–1099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dörfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dörfler, F., Bullo, F.: Exploring synchronization in complex oscillator networks. arXiv:1209.1335 [math.OC]

  9. Fishman, R.S., Stroud, D.: Role of long-range Coulomb interactions in granular superconductors. Phys. Rev. B 38, 290–296 (1988)

    Article  Google Scholar 

  10. Gendelman, O.V., Savin, A.V.: Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction. Phys. Rev. Lett. 84, 2381–2384 (2000)

    Article  Google Scholar 

  11. Giardiná, C., et al.: Finite thermal conductivity in 1D lattices. Phys. Rev. Lett. 84, 2144–2147 (2000)

    Article  Google Scholar 

  12. Gushchin, A., Mallada, E., Tang, A.: Synchronization of heterogeneous Kuramoto oscillators with arbitrary topology. arXiv:1410.7448v1 [math.DS]

  13. Ha, S.Y., Ha, T., Kim, J.H.: On the complete synchronization of the Kuramoto phase model. Phys. D 239, 1692–1700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ha, S.Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haraux, A., Jendoubi, M.A.: Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. J. Differ. Equ. 144, 313–320 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ha, S.Y., Kim, Y., Li, Z.: Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration. SIAM J. Appl. Dynam. Syst. 13, 466–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hill, D.J., Chen, G.: Power systems as dynamic networks. In: Proceedings of the IEEE International Symposium on Circuits and systems, Kos, Greece, pp. 722–725 (2006)

  18. Hong, H., Choi, M.Y., Yi, J., Soh, K.S.: Inertia effects on periodic synchronization in a system of coupled oscillators. Phys. Rev. E 59, 353–363 (1999)

    Article  Google Scholar 

  19. Hong, H., Jeon, G.S., Choi, M.Y.: Spontaneous phase oscillation induced by inertia and time delay. Phys. Rev. E 65, 026208 (2002)

    Article  MathSciNet  Google Scholar 

  20. Hu, B., Qin, W.-X., Zheng, Z.: Rotation number of the overdamped Frenkel–Kontorova model with ac-driving. Phys. D 208, 172–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, Boston, Massachusetts, pp. 4296–4301 (2004)

  22. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, Vol. 39. Springer, Berlin, pp. 420–422 (1975)

  23. LaSalle, J.P.: Stability theory for ordinary differential equations. J. Differ. Equ. 4, 57–65 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Phys. D 205, 249–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qin, W.-X., Xu, C.-L., Ma, X.: Stability of single-wave-form solutions in the underdamped Frenkel–Kontorova model. SIAM J. Math. Anal. 40, 952–967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qin, W.-X.: Frequency synchronization in networks of coupled oscillators, a monotone dynamical systems approach. Int. J. Bifur. Chaos 19, 4107–4116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qin, W.-X.: Rotating modes in the Frenkel–Kontorova model with periodic interaction potential. Discrete Contin. Dynam. Syst. (Ser. A) 27, 1147–1158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Takeno, S., Peyrard, M.: Nonlinear modes in coupled rotators models. Phys. D 92, 140–163 (1996)

    Article  MATH  Google Scholar 

  31. Takeno, S., Peyrard, M.: Nonlinear rotating modes: Green’s-function solution. Phys. Rev. E 55, 1922–1928 (1997)

    Article  Google Scholar 

  32. Tanaka, H.-A., Lichtenberg, A.J., Oishi, S.: First order phase transition resulting from finite inertia in coupled oscillator systems. Phys. Rev. Lett. 78, 2104–2107 (1997)

    Article  Google Scholar 

  33. Wiesenfeld, K., Colet, P., Strogatz, S.H.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1569 (1998)

    Article  Google Scholar 

  34. Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xin Qin.

Additional information

Supported by the National Natural Science Foundation of China (11371270, 11071181).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Qin, WX. Inertial effect on frequency synchronization for the second-order Kuramoto model with local coupling. Z. Angew. Math. Phys. 68, 33 (2017). https://doi.org/10.1007/s00033-017-0778-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0778-8

Mathematics Subject Classification

Keywords

Navigation