Skip to main content
Log in

On the extrema of a nonconvex functional with double-well potential in 1D

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper mainly investigates the extrema of a nonconvex functional with double-well potential in 1D through the approach of nonlinear differential equations. Based on the canonical duality method, the corresponding Euler–Lagrange equation with Neumann boundary condition can be converted into a cubic dual algebraic equation, which will help find the local extrema for the primal problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bourgain J., Brezis H.: Sur l’équation div \({u=f}\). C. R. Acad. Sci. Paris Ser. I 334, 973–976 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bubner N.: Landau–Ginzburg model for a deformation-driven experiment on shape memory alloys. Contin. Mech. Themodyn. 8, 293–308 (1996)

    Article  MATH  Google Scholar 

  4. Ekeland I., Temam R.: Convex Analysis and Variational Problems. Dunod, Paris (1976)

    MATH  Google Scholar 

  5. Ericksen J.L.: Equilibrium of bars. J. Elast. 5, 191–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao D.Y.: Nonlinear elastic beam theory with applications in contact problem and variational approaches. Mech. Res. Commun. 23(1), 11–17 (1996)

    Article  MATH  Google Scholar 

  7. Gao D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  8. Gao D.Y., Ogden R.W., Stravroulakis G.: Nonsmooth and Nonconvex Mechanics: Modelling, Analysis and Numerical Methods. Kluwer Academic Publishers, Dordrecht (2001)

    Book  Google Scholar 

  9. Gao D.Y., Ogden R.W.: Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation. Q. J. Mech. Appl. Math. 61(4), 497–522 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao D.Y., Ogden R.W.: Closed-form solutions, extremality and nonsmoothness criteria in a large diformation ealsticity problem. Z. Angew. Math. Phys. 59, 498–517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao D.Y., Strang G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Q. Appl. Math. 47(3), 487–504 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Kibble T.W.B.: Phase transitions and topological defects in the early universe Aust. J. Phys. 50, 697–722 (1997)

    MATH  Google Scholar 

  13. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications I–III. Dunod, Paris (1968-1970)

  14. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

  15. Rowlinson J.S.: Translation of J. D. van der Waals: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 197–244 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Lu.

Additional information

Dedicated to Professor Jim Hill on the occasion of his 70th birthday.

This article is part of the topical collection “James Hill” guest edited by Scott McCue and Natalie Thamwattana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D.Y., Lu, X. On the extrema of a nonconvex functional with double-well potential in 1D. Z. Angew. Math. Phys. 67, 62 (2016). https://doi.org/10.1007/s00033-016-0636-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0636-0

Mathematics Subject Classification

Keywords

Navigation