Skip to main content
Log in

Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the stationary two-dimensional incompressible flow of non-Newtonian fluid governed by a nonlinear constitutive law and with a multivalued nonmonotone subdifferential frictional boundary condition. We provide an abstract result on existence of solution to an operator inclusion modeling the flow phenomenon. We prove a theorem on existence and, under additional assumptions, also uniqueness of weak solution to the flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baniotopoulos C.C., Haslinger J., Morávková Z.: Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities. Appl. Math. 50, 1–25 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buliček M., Gwiazda P., Málek J., Świerczewska-Gwiazda A.: On steady flows of an incompressible fluid with implicit power-law-like rheology. Adv. Calc. Var. 2, 109–136 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Clarke F.H.: Optimization and nonsmooth analysis. Wiley, Interscience, New York (1983)

    MATH  Google Scholar 

  4. Consiglieri L.: A nonlocal friction problem for a class of non-Newtonian flows. Port. Math. 60, 237–252 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Denkowski Z., Migórski S., Papageorgiou N.S.: An introduction to nonlinear analysis: theory. Kluwer, Boston (2003)

    Book  Google Scholar 

  6. Denkowski Z., Migórski S., Papageorgiou N.S.: An introduction to nonlinear analysis: applications. Kluwer, Boston (2003)

    Book  Google Scholar 

  7. Duvaut G., Lions J.L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  8. Fujita H.: A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. App. Math. 149, 57–69 (2002)

    Article  MATH  Google Scholar 

  9. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Linearized Steady problems, vol. I. Springer, New York/Berlin (1994)

  10. Gwiazda P., Málek J., Świerczewska A.: On flows of an incompressible fluid with discontinuous power-law rheology. Comput. Math. App. 53, 531–546 (2007)

    Article  MATH  Google Scholar 

  11. Ionescu I.R., Nguyen Q.L.: Dynamic contact problems with slip dependent friction in viscoelasticity. Int. J. Appl. Math. Comp. 12, 71–80 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Kalita P., Łukaszewicz G.: Attractors for Navier–Stokes flows with multivalued and nonmonotone subdifferential boundary conditions. Nonlinear Anal. Real World Appl. 19, 75–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalita P., Łukaszewicz G.: On large time asymptotics for two classes of contact problems, Chapter 12. In: Han, W., Migórski, S., Sofonea, M. (eds.) Advances in variational and hemivariational inequalities theory, numerical analysis, and applications, pp. 299–332. Springer, New York (2015)

    Google Scholar 

  14. Łukaszewicz G.: On the existence of the exponential attractor for a planar shear flow with Tresca’s friction condition. Nonlinear Anal. Real World Appl. 14, 1585–1600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Łukaszewicz G.: On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete Continous Dyn. Syst. A 34, 3969–3983 (2014)

    Article  MATH  Google Scholar 

  16. Málek J., Nečas J., Rokyta M., Růžička M.: Weak and measure-valued solutions to evolutionary PDEs. Springer, New York/London (1996)

    Book  MATH  Google Scholar 

  17. Málek, J., Rajagopal, K.R.: Mathematical issues concerning the Navier–Stokes equations and some of their generalizations. In: Dafermos, C., Feireisl, E. (eds.) Handbook of differential equations: evolutionary equations, vol. 2, pp. 371–459. Elsevier/North Holland, Amsterdam (2005)

  18. Migórski S., Ochal A.: Hemivariational inequalities for stationary Navier–Stokes equations. J. Math. Anal. Appl. 306, 197–217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Migórski, S., Ochal, A.: Navier–Stokes problems modeled by evolution hemivariational inequalities. Discrete Continous Dyn. Sys. Supplement, 731–740 (2007)

  20. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. In: Advances in mechanics and mathematics, vol. 26. Springer, New York (2013)

  21. Naniewicz Z., Panagiotopoulos P.D.: Mathematical theory of hemivariational inequalities and applications. Dekker, New York (1995)

    Google Scholar 

  22. Nečas J.: Direct methods in the theory of elliptic equations. Springer, New York (2012)

    MATH  Google Scholar 

  23. Panagiotopoulos P.D.: Hemivariational inequalities, applications in mechanics and engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  24. Persson B.N.J.: Sliding friction. Physical principles and applications. Springer, New York/Berlin (2000)

    Book  MATH  Google Scholar 

  25. Pompe W.: Korn’s first inequality with variable coefficients and its generalization. Comment. Math. Univ. Carolin. 44, 57–70 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Perrin G.J., Rice J.R., Zheng G.: Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids 43, 1461–1495 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Růžička, M.R., Diening, L.: Non-Newtonian fluids and function spaces. In: J. Rákosnik (ed.) Nonlinear analysis, function spaces and applications, Proceedings of the Spring School, Prague, May 30-June 6, 2006, vol. 8, pp. 95–143, Czech Academy of Sciences, Mathematical Institute, Praha, (2007)

  28. Scholz C.H.: The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  29. Schowalter W.R.: Mechanics of Non-Newtonian fluids. Pergamon Press, Oxford (1978)

    Google Scholar 

  30. Šestak I., Jovanović B.S.: Approximation of thermoelasticity contact problem with nonmonotone friction. App. Math. Mech. 31, 77–86 (2010)

    Article  MATH  Google Scholar 

  31. Truesdell C., Noll W.: The Non-linear field theories of mechanics. Handbuch der Physik, III3. Springer, New York (1965)

    Google Scholar 

  32. Zeidler E.: Nonlinear functional analysis and its applications, vol. II/A: linear monotone operators. Springer, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Migórski.

Additional information

Research supported by the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant Agreement No. 295118, the National Science Center of Poland under the Maestro Advanced Project no. DEC-2012/06/A/ST1/00262, and the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No. W111/7.PR/2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudek, S., Kalita, P. & Migórski, S. Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions. Z. Angew. Math. Phys. 66, 2625–2646 (2015). https://doi.org/10.1007/s00033-015-0545-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0545-7

Mathematics Subject Classification

Keywords

Navigation