Skip to main content
Log in

Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider an initial boundary value problem for the magnetohydrodynamic compressible flows. By assuming that the heat conductivity depends on temperature with κ (θ) = θq, q > 0, we prove the existence and uniqueness of global strong solutions with large initial data and show that neither shock waves nor vacuum and concentration of mass in the solutions are developed in a finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Cabannes H.: Theoretical Magnetofluiddynamics. Academic Press, New York (1970)

    Google Scholar 

  2. Chen G.Q., Wang D.H.: Global solutions for nonlinear magnetohydrodynamics with large initial data. J. Differ. Equ. 182, 344–376 (2002)

    Article  MATH  Google Scholar 

  3. Chen G.Q., Wang D.H.: Existence and continuous dependence of large solutions for the magnetohydrodynamics equations. Z. Angew. Math. Phys. 54, 608–632 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dafermos C.M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13, 397–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dafermos C.M., Hsiao L.: Global smooth thermomechechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. Theory Methods Appl. 6, 435–454 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duan R., Jiang F., Jiang S.: On the Rayleigh Taylor instability for incompressible, inviscid magnetohydrodynamic flows. SIAM J. Appl. Math. 71, 1990–2013 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fan J.S., Jiang S., Nakamura G.: Vanishing shear viscosity limit in the magnetohydrodynamics equations. Commun. Math. Phys. 270(3), 691–708 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan, J.S., Huang, S.X., Li, F.C.: Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vaccum, preprint (2013)

  9. Hoff D., Tsyganov E.: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z. Angew. Math. Phys. 56, 791–804 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jeffrey A., Taniuti T.: Non-Linear Wave Propagation. With Applications to Physics and Magnetohydrodynamics. Academic Press, New York (1964)

    MATH  Google Scholar 

  11. Jiang F., Jiang S., Wang Y.J.: On the Rayleigh-Taylor instability for incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39(3), 399–438 (2014)

    Article  MATH  Google Scholar 

  12. Kawashima S., Okada M.: Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc. Jpn. Acad. Ser. A Math. Sci. 58, 384–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kazhikhov, A.V., Shelukin, V.V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41 (2) (1977) 273–282; translated from Prikl. Mat. Meh. 41 (2) (1977) 282–291 (Russian)

  14. Kulikovskiy A.G., Lyubimov G.A.: Magnetohydrodynamics. Addison-Wesley, Reading (1965)

    Google Scholar 

  15. Laudau L.D., Lifshitz E.M.: Electrodynamics of Continuous Media. Pergamon, New York (1984)

    Google Scholar 

  16. Liu, T.-P., Zeng, Y.: Large-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. In: American Mathematics Sociery, No. 599, pp 120 (1997)

  17. Nash J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    MATH  MathSciNet  Google Scholar 

  18. Pan, R.H., Zhang, W.Z.: Compressible Navier-Stokes Equations with Temperature Dependent Heat Conductivities, Preprint (2013)

  19. Polovin R.V., Demutskii V.P.: Fundamentals of Magnetohydrodynamics. Consultants Bureau, New York (1990)

    Google Scholar 

  20. Vol’pert A.I., Hudjaev S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb. 16, 517–544 (1972)

    Article  Google Scholar 

  21. Wang D.H.: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J. Appl. Math. 63, 1424–1441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Hu.

Additional information

The second author’s research was supported by the National Basic Research Program (Grant No. 2014CB745000), NSFC (Grant No. 11171035) and BJNSF (Grant No. 1142001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Ju, Q. Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity. Z. Angew. Math. Phys. 66, 865–889 (2015). https://doi.org/10.1007/s00033-014-0446-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0446-1

Keywords

Mathematics Subject Classification

Navigation