Skip to main content
Log in

A note on regularity and uniqueness of natural convection with effects of viscous dissipation in 3D open channels

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the existence of unique regular solutions of steady-state buoyancy-driven flows of viscous incompressible heat-conducting fluids in 3D open channels under mixed boundary conditions. The model takes into account the phenomena of the viscous energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  2. Beneš M.: Solutions to the mixed problem of viscous incompressible flows in a channel. Arch. Math. 93, 287–297 (2009)

    Article  MATH  Google Scholar 

  3. Beneš M.: Strong solutions to non-stationary channel flows of heat-conducting viscous incompressible fluids with dissipative heating. Acta Appl. Math. 116, 237–254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beneš M.: A note on the regularity of thermally coupled viscous flows with critical growth in non-smooth domains. Math. Methods Appl. Sci. 36, 1290–1300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beneš M., Kučera P.: On the Navier–Stokes flows for heat-conducting fluids with mixed boundary conditions. J. Math. Anal. Appl. 389, 769–780 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charki Z.: Existence and uniqueness of solutions for the steady deep Bénard convection problem. Z. Angew. Math. Mech. 75, 909–915 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. da Rocha M.S., Rojas-Medar M.A., Rojas-Medar M.D.: On the existence and uniqueness of the stationary solution to equations of natural convection with boundary data in L 2. Proc. R. Soc. Lond. A 459, 609–621 (2003)

    Article  MATH  Google Scholar 

  8. Frehse J.: A discontinuous solution of mildly nonlinear elliptic systems. Math. Z. 134, 229–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fučík S., Kufner A.: Nonlinear Differential Equations. Elsevier, Amsterdam (1980)

    MATH  Google Scholar 

  10. Galdi G.P., Rannacher R., Robertson A.M., Turek S.: Hemodynamical Flows, Modeling, Analysis and Simulation. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  11. Glowinski R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  12. Gresho P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev. Fluid Mech. 23, 413–453 (1991)

    Article  MathSciNet  Google Scholar 

  13. Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kučera P.: Solution of the stationary Navier–Stokes equations with mixed boundary conditions in a bounded domain. Pitman Res. Notes Math. Ser. 379, 127–131 (1998)

    Google Scholar 

  15. Kračmar S., Neustupa J.: A weak solvability of a steady variational inequality of the Navier–Stokes type with mixed boundary conditions. Nonlinear Anal. 47, 4169–4180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kufner A., Sändig A.M.: Some Applications of Weighted Sobolev Spaces. B.G. Teubner, Stuttgart (1987)

    MATH  Google Scholar 

  17. Kufner A., John O., Fučík S.: Function Spaces. Springer, Berlin (1977)

    MATH  Google Scholar 

  18. Lions J., Magenes E.: Problémes aux limites non homogénes et applications. Dunod, Paris (1968)

    MATH  Google Scholar 

  19. Liu J.: Open and traction boundary conditions for the incompressible Navier–Stokes equations. J. Comput. Phys. 228, 7250–7267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lorca S.A., Boldrini J.L.: Stationary solutions for generalized Boussinesq models. J. Differ. Equ. 124, 389–406 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazya V.G., Rossmann J.: L p estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)

    Article  MathSciNet  Google Scholar 

  22. Mazya, V.G., Rossmann, J.: Elliptic Equations in Polyhedral Domains. Mathematical Surveys and Monographs, vol. 162 (2010)

  23. Marušič-Paloka E., Pažanin I.: Modelling of heat transfer in a laminar flow through a helical pipe. Math. Comput. Model. 50, 1571–1582 (2009)

    Article  MATH  Google Scholar 

  24. Marušić-Paloka E., Pažanin I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rajagopal K.R., Ruzicka M., Srinivasa A.R.: On the Oberbeck–Boussinesq Approximation. Math. Models Methods Appl. Sci. 6, 1157–1167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Villamizar-Roa E.J., Rodríguez-Bellido M.A., Rojas-Medar M.A.: The Boussinesq system with mixed nonsmooth boundary data. C. R. Acad. Sci. Paris Ser. I 343, 191–196 (2006)

    Article  MATH  Google Scholar 

  27. Sani R.L., Gresho P.M.: Résumé and remarks on the open boundary condition minisymposium. Int. J. Numer. Methods Fluids 18, 983–1008 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Beneš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneš, M. A note on regularity and uniqueness of natural convection with effects of viscous dissipation in 3D open channels. Z. Angew. Math. Phys. 65, 961–975 (2014). https://doi.org/10.1007/s00033-013-0373-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0373-6

Mathematics Subject Classification (2010)

Keywords

Navigation