Skip to main content
Log in

On a system of nonlinear wave equations with Balakrishnan–Taylor damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the initial-boundary value problem for a coupled system of nonlinear viscoelastic wave equations of Kirchhoff type with Balakrishnan–Taylor damping terms. For certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation functions which is not necessarily of exponential or polynomial type. Also, we show that nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of stronger damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O., Cavalcanti M.M., Domingos Cavalcanti V.N., Rammaha M. A., Toundyjov D.: On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete Contin. Dyn. Syst. Ser. S 2, 583–608 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Appleby J.A.D., Fabrizio M., Lazzri B., Reynolds D.W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16, 1677–1694 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balakrishnan, A.V., Taylor, L.W.: Distributed parameter nonlinear damping models for flight structures. In: Proceedings “Daming 89”, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB (1989)

  4. Ball J.: Remarks on blow up and nonexistence theorems nonlinear evolution equations. Q. J. Math. Oxford 28, 473–486 (1977)

    Article  MATH  Google Scholar 

  5. Barbu V., Lasiecka I., Rammaha M.A.: On nonlinear wave equations with degenerate damping and source terms. Trans. Am. Math. Soc. 357, 2571–2622 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bass, R.W., Zes, D.: Spillover nonlinearity, and flexible structures. In: Taylor, L.W. (ed.) The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065, pp. 1–14 (1991)

  7. Berrimi S., Messaoudi S.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64, 2314–2331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cannarsa P., Sforza D.: Integro-differential equations of hyperbolic type with positive definite kernels. J. Differ. Equ. 250, 4289–4335 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cavalcanti M.M., Domingos Cavalcanti V.N., Prates Filho J.S., Soriano J.A.: Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping. Differ. Integral Equ. Appl. 14, 85–116 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Cavalcanti M.M., Domingos Cavalcanti V.N., Martinez P.: General decay rate estimates for viscoelastic dissipative system. Nonlinear Anal. Theory Methods Appl. 68, 177–193 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cavalcanti M.M., Oquendo H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42, 1310–1324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Clark H.R.: Elastic membrane equation in bounded and unbounded domains. Electron. J. Qual. Theory Differ. Equ. 11, 1–21 (2002)

    Google Scholar 

  14. Glassey R.T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132, 183–203 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haraux A., Zuazua E.: Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 100, 191–206 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalantarov V.K., ladyzhenskaya O.A.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 10, 53–70 (1978)

    Article  Google Scholar 

  17. Kirchhoff G.: Vorlesungen über Mechanik. Tauber, Leipzig (1883)

    Google Scholar 

  18. Komornik V.: Exact Controllability and Stabilization The Multiplier Method Res. Appl. Math. vol. 36. Wiley-Masson, Pairs/Chichester (1994)

    Google Scholar 

  19. Kopackova M.: Remarks on bounded solutions of a semilinear dissipative hyperbolic equation. Comment. Math. Univ. Carolin. 30, 713–719 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Li M.R., Tsai L.Y.: Existence and nonexistence of global solutions of some systems of semilinear wave equations. Nonlinear Anal. TMA 54, 1397–1415 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Medeiros, L.A., Milla Miranda, M.: Weak solutions for a system of nonlinear Klein-Gordon equations. Ann. Mat. Pura Appl. CXLVI, pp. 173–183 (1987)

  22. Medeiros L.A., Menzala G.P.: On a mixed problem for a class of nonlinear Klein-Gordon equations. Acta Math. Hung. 52, 61–69 (1988)

    Article  MATH  Google Scholar 

  23. Medjden M., Tatar T.-E.: On the wave equation with a temporal nonlocal term. Dyn. Syst. Appl. 16, 665–672 (2007)

    MATH  MathSciNet  Google Scholar 

  24. Mustafa M.I.: Well posedness and asymptotic behavior of coupled system of nonlinear viscoelastic equations. Nonlinear Anal. Real World Appl. 13, 452–463 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pata V.: Exponential stability in linear viscoelasticity. Q. Appl. Math. 64, 499–513 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Pitts D.R., Rammaha M.A.: Global existence and non-existence theorems for nonlinear wave equations. Indiana Univ. Math. J. 51(6), 1479–1509 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rammaha M.A.: The influence of damping and source terms on solutions of nonlinear wave equations. Bol. Soc. Parana. Mat. 25(3), 77–90 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Segal L.E.: The global cauchy problem for relativistic scalar fields with power interactions. Bull. Soc. Math. France 91, 129–135 (1963)

    MATH  MathSciNet  Google Scholar 

  29. Tatar N., Zaraï A.: Exponential stability and blow up for a problem with Balakrishnan–Taylor damping. Demonstr. Math. XLIV 1, 67–90 (2011)

    Google Scholar 

  30. Vicente A.: Wave equation with acoustic/memory boundary condition. Boletim Soc. Parana. Mat. 27(3), 29–39 (2009)

    MATH  MathSciNet  Google Scholar 

  31. You Y.: Intertial manifolds and stabilization of nonlinear beam equations with Balakrishnan–Taylor damping. Abstr. Appl. Anal. 1, 83–102 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang J.: On the standing wave in coupled non-linear Klein-Gordon equations. Math. Methods Appl. Sci. 26, 11–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zarai A., Tatar N.-e.: Global existence and polynomial decay for a problem with Balakrishnan–Taylor damping. Arch. Math. (BRNO) 46, 157–176 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ma.

Additional information

The first author is supported in part by NSF of PR China (11071266) and in part by Natural Science Foundation Project of CQ CSTC (2010BB9218). This work is supported by the Fundamental Research Funds for the Central University, Project No CDJXS12 10 11 06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, C., Ma, J. On a system of nonlinear wave equations with Balakrishnan–Taylor damping. Z. Angew. Math. Phys. 65, 91–113 (2014). https://doi.org/10.1007/s00033-013-0324-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0324-2

Mathematics Subject Classification (2000)

Keywords

Navigation