Skip to main content
Log in

Positive solutions of a diffusive Leslie–Gower predator–prey model with Bazykin functional response

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a diffusive Leslie–Gower predator–prey model with Bazykin functional response and zero Dirichlet boundary condition. We show the existence, multiplicity and uniqueness of positive solutions when parameters are in different regions. Results are proved by using bifurcation theory, fixed point index theory, energy estimate and asymptotical behavior analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz-Alaoui M.A., Okiye M.D.: Boundedness and global stability for a predator–prey model with modified leslie-gower and holling-type II schemes. Appl. Math. Lett. 16(7), 1069–1075 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bazykin A.D.: Nonlinear dynamics of interacting populations, vol. 11. World Scientific Pub Co Inc, Singapore (1998)

    Google Scholar 

  3. Blat J., Brown K.J.: Bifurcation of steady-state solutions in predator–prey and competition systems. Proc. R. Soc. Edinb. Sect. A 97, 21–34 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Camara B.I., Aziz-Alaoui M.A.: Dynamics of predator–prey model with diffusion. Dyn. Contin. Discret. Impuls. Syst. Ser. A 15, 897–906 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Camara B.I., Aziz-Alaoui M.A.: Turing and hopf patterns formation in a predator–prey model with leslie-gower-type functional response. Dyn. Contin. Discr. Impuls. Syst. 16, 479–488 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

  7. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dancer E.N.: On the indices of fixed points of mappings in cones and applications. J. Math. Anal. Appl. 91(1), 131–151 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dancer E.N.: On positive solutions of some pairs of differential equations. Trans. Am. Math. Soc. 284(2), 729–743 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, (2001, reprint of the 1998 edition)

  11. Holling C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1959)

    Article  Google Scholar 

  12. Kamenskiĭ, M.: Measures of noncompactness and the perturbation theory of linear operators. Number. Vih. 430 (1977)

  13. Leslie P.H., Gower J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika 47(3/4), 219–234 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li L.: Coexistence theorems of steady states for predator–prey interacting systems. Trans. Am. Math. Soc. 305(1), 143–166 (1988)

    Article  MATH  Google Scholar 

  15. Neuhauser C.: Mathematical challenges in spatial ecology. Notices of the AMS 48(11), 1304–1314 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Peng R., Wang M.: On multiplicity and stability of positive solutions of a diffusive prey–predator model. J. Math. Anal. Appl. 316(1), 256–268 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ruan W., Feng W.: On the fixed point index and multiple steady-state solutions of reaction-diffusion systems. Differ. Integr. Equ. 8(2), 371–391 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Shi J.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169(2), 494–531 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shi J., Wang X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)

    Article  MATH  Google Scholar 

  21. Tian Y., Weng P.: Stability analysis of diffusive predator–prey model with modified Leslie-Gower and holling-type ii schemes. Acta Applicandae Mathematicae 114, 173–192 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang M., Wu Q.: Positive solutions of a prey–predator model with predator saturation and competition. J. Math. Anal. Appl. 345(2), 708–718 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wei M., Wu J., Guo G.: The effect of predator competition on positive solutions for a predator–prey model with diffusion. Nonlinear Anal. Theory Methods Appl. 75(13), 5053–5068 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yamada, Y.: Positive solutions for Lotka-Volterra systems with cross-diffusion. In: Handbook of differential equations: stationary partial differential equations. Handbook of Differential Equations, vol. VI, pp. 411–501. Elsevier/North-Holland, Amsterdam, 2008

  25. Zhou J.: Positive solutions of a diffusive predator–prey model with modified leslie–gower and holling-type ii schemes. J. Math. Anal. Appl. 389(2), 1380–1393 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou, J., Shi J.: Multiplicity of positive solutions of a diffusive Leslie–Gower predator–prey model with Holling type II functional responses (2012, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Additional information

Partially supported by NSFC grant 11201380, the Fundamental Research Funds for the Central Universities grant XDJK2012B007, Doctor Fund of Southwest University grant SWU111021 and Educational Fund of Southwest University grant 2010JY053.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J. Positive solutions of a diffusive Leslie–Gower predator–prey model with Bazykin functional response. Z. Angew. Math. Phys. 65, 1–18 (2014). https://doi.org/10.1007/s00033-013-0315-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0315-3

Mathematics Subject Classification (2000)

Keywords

Navigation