Skip to main content
Log in

Rigidity and Parametric Embedding of Semi-complete Vector Fields on the Unit Disk

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

This manuscript contains recent results on generation theory of semigroups of holomorphic mappings with applications to geometric function theory as well as new results which could define some new trends in the development of the subject. We present various characterizations, properties and methods of parametric embedding of the class of semi-complete vector fields (holomorphic generators) and their relations to the classes of starlike and spirallike functions on the unit disk. In particular, we show that the class of univalent functions satisfying the Nashiro–Warshawskii condition consists of semi-complete vector fields.

In a parallel manner, we present certain quantitative characteristics of boundary regular null points of semi-complete vector fields and corresponding backward flow invariant domains. In addition, we establish generalized infinitesimal versions of the Burns-Krantz rigidity theorem. Some open questions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate M.: The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl. 161, 167–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aharonov D., Elin M., Reich S., Shoikhet D.: Parametric representations of semicomplete vector fields on the unit balls in \({\mathbb{C}^{n}}\) and in Hilbert space. Atti Accad. Naz. Lincei 10, 229–253 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Aharonov D., Reich S., Shoikhet D.: Flow invariance conditions for holomorphic mappings in Banach spaces. Math. Proc. R. Ir. Acad. 99A, 93–104 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Alpay D., Dijksma A., Langer H., Reich S., Shoikhet D.: Boundary interpolation and rigidity for generalized Nevanlinna functions. Math. Nachr. 283, 335–364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpay D., Reich S., Shoikhet D.: Rigidity theorems, boundary interpolation and reproducing kernels for generalized Schur functions. Comput. Methods Funct. Theory 9, 347–364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avicou, C., Chalendar, I., and Partington, J. R., A class of quasicontractive semigroups acting on Hardy and Dirichlet space, to appear in J. Evol. Equ., arXiv:1502.00314.

  7. Avicou, C., Chalendar, I., and Partington, J. R., Analyticity and compactness of semigroups of composition operators, arXiv:1502.05576.

  8. Berkson E., Kaufman R., Porta H.: Möbius transformations of the disk and 1- parameter groups of isometries of H p. Trans. Amer. Math. Soc. 199, 223–239 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Berkson E., Porta H.: Semigroups of analytic functions and composition operators. Michigan Math. J. 25, 101–115 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blasco O., Contreras M.D., Díaz-Madrigal S., Martińez J., Papadimitrakis M., Siskakis A.G.: Semigroups of composition operators and integral operators in spaces of analytic functions, Ann. Acad. Scie. Fenn. Math. 38, 67–89 (2013)

    Article  MATH  Google Scholar 

  11. Bolotnikov V., Elin M., Shoikhet D.: Inequalities for angular derivatives and boundary interpolation. Anal. Math. Phys. 3, 63–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourdon, P. S., and Shapiro, J. H., Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), No. 596.

  13. Bracci, F., Levenstein, M., Reich, S., and Shoikhet, D., Growth estimates for the numerical range of holomorphic mappings and applications, Accepted to publication.

  14. Burns D.M., Krantz S.G.: Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Amer. Math. Soc. 7, 661–676 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Butzer, P. L., and Berens, H., Semi-Groups Approximation, Springer, Berlin, 1967.

  16. Contreras M. D., Díaz-Madrigal S.: Analytic flows on the unit disk: angular derivatives and boundary fixed points. Pacific J. Math. 222, 253–286 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Contreras M.D., Díaz-Madrigal S., Pommerenke Ch.: On boundary critical points for semigroups of analytic functions. Math. Scand. 98, 125–142 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Cowen, C. C., and MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.

  19. Cowen C.C., Pommerenke Ch.: Inequalities for angular derivative of an analytic function in the unit disk. J. London Math. Soc. 26, 271–289 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duren P.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  21. Elin, M., Jacobzon, F., Levenshtein, M., and Shoikhet, D., The Schwarz Lemma. Rigidity and Dynamics, in: Harmonic and Complex Analysis and Applications, Birkhauser Basel, 2014, 135–230.

  22. Elin M., Levenshtein M., Reich S., Shoikhet D.: Commuting semigroups of holomorphic mappings. Math. Scand. 103, 295–319 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Elin M., Reich S., Shoikhet D.: A Julia-Carathéodory theorem for hyperbolically monotone mappings in the Hilbert ball Israel J. Math. 164, 397–411 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Elin, M., Reich, S., Shoikhet, D., and Yacobzon, F., Rates of convergence of oneparameter semigroups with boundary Denjoy-Wolff fixed points, Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama (2008), 43–58.

  25. Elin M., Shoikhet D.: Dynamic extension of the Julia–Wolff–Carathéodory theorem. Dynamic Systems and Applications 10, 421–438 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Elin, M., and Shoikhet, D., Semigroups with boundary fixed points on the unit Hilbert ball and spirallike mappings, in: Geometric Function Theory in Several Complex Variables, World Sci. Publishing, River Edge, NJ (2004), 82–117.

  27. Elin M., Shoikhet D.: Boundary behavior and rigidity of semigroups of holomorphic mappings. Analysis Math. Physics 1, 241–258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Elin, M., and Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in univalent functions, functional equations and semigroup theory, Birkhäuser Basel, 2010.

  29. Elin, M., Shoikhet, D., and Tarkhanov, N., Analytic extension of semigroups of holomorphic mappings and composition operators, Preprint, Institute of Mathematics, University of Potsdam, 2015.

  30. Elin M., Shoikhet D., Yacobzon F.: Linearization models for parabolic type semigroups. J. Nonlinear Convex Anal. 9, 205–214 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Elin M., Shoikhet D., Zalcman L.: A flower structure of backward flow invariant domains for semigroups Ann. Acad. Sci. Fenn. Math. 33, 3–34 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs 26, AMS, Providence, 1969.

  33. Goodman, A. W., Univalent functions, Vol 1, Mariner publishing company, Inc., 1983.

  34. Goryainov V. V.: Fractional iterates of functions that are analytic in the unit disk with given fixed points, Math. USSR-Sb. 74, 29–46 (1993)

    Article  MathSciNet  Google Scholar 

  35. Graham, I., and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York–Basel, 2003.

  36. Gurganus K. R.: \({\phi}\) -like holomorphic functions in \({\mathbb{C}^{n}}\) and Banach spaces. Trans. Amer. Math. Soc. 205, 389–406 (1975)

    MathSciNet  Google Scholar 

  37. Harris, T. E., The Theory of Branching Processes, Springer, Berlin-Göttingen- Heidelberg, 1963.

  38. Helmke U., Moore J.B.: Optimization and Dynamical Systems. Springer, London (1994)

    Book  MATH  Google Scholar 

  39. Hille, E., and Phillips, R. S., Functional Analysis and Semi-Groups, AMS Colloq. Publ., Vol. 31, Providence, R.I., 1957.

  40. Hurst P.R.: Relating composition operators on different weighted Hardy spaces. Arch. Math. 68, 503–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jacobzon F., Reich S., Shoikhet D.: Linear fractional mappings: invariant sets, semigroups and commutativity. J. Fixed Point Theory Appl. 5, 63–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kantorovitz, S., Semigroups of Operators and Spectral Theory, Pitman Research Notes in Math. Series, No. 330, Longman, 1995.

  43. Kantorovitz, S.,Topics in Operator Semigroups, Progress in Mathematics, No. 281, Birkhäuser, Basel, 2010.

  44. Karlin S., McGregor J.: Embedding iterates of analytic functions with two fixed points into continuous groups. Trans. Amer. Math. Soc. 132, 137–145 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kœnigs G.: Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. 1, 2–41 (1884)

    Google Scholar 

  46. Krantz S.G.: The Schwarz Lemma at the boundary Complex Var. Elliptic Equat. 56, 455–468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kresin, G. and Maz’ya, V. G., Sharp Real-Part Theorems. A Unified Approach, Lecture Notes in Mathematics, 1903, Springer, Berlin, 2007.

  48. Osserman R.: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128, 3513–3517 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pazy A.: Semigroups of nonlinear contractions and their asymptotic behavior. Nonlinear Analysis and Mechanics, Pitman Res. Notes Math. 30, 36–134 (1979)

    MathSciNet  Google Scholar 

  50. Pommerenke Ch.: Boundary Behavior of Conformal Maps. Springer, New York (1992)

    Book  MATH  Google Scholar 

  51. Poreda, T., On generalized differential equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.) 310 (1991).

  52. Reich S., Shoikhet D.: Generation theory for semigroups of holomorphic mappings in Banach spaces. Abstr. Appl. Anal. 1, 1–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Reich S., Shoikhet D.: Semigroups and generators on convex domains with the hyperbolic metric. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend. Lincei 8, 231–250 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Reich, S., and Shoikhet, D., The Denjoy–Wolff theorem, Math. Encyclopaedia, Supplement 3, Kluwer Academic Publishers, Dordrecht (2002), 121–123.

  55. Reich, S., and Shoikhet, D., Nonlinear Semigroups, Fixed Points, and the Geometry of Domains in Banach Spaces, World Scientific Publisher, Imperial College Press, London, 2005.

  56. Shapiro J. H.: Composition Operators and Classical Function Theory. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  57. Shoikhet D.: Semigroups in Geometrical Function Theory. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  58. Shoikhet D.: Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point. Int. J. Pure Appl. Math. 5, 335–361 (2003)

    MathSciNet  MATH  Google Scholar 

  59. Shoikhet D.: Another look at the Burns-Krantz theorem. J. Anal. Math. 105, 19–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Siskakis A.G.: Semigroups of composition operators on spaces of analytic functions, a review. Contemp. Math. 213, 229–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  61. Stankiewicz, J., Quelques problèmes extrèmaux dans les classes des fonctions \({\alpha}\) - angulairement ètoilèes, Ann. Univ. Mariae Curie-Sk.lodowska, Sect. A 20 (1966), 59–75

  62. Strohhacker E.: Beiträge zur Theorie der schlichten Funktionen. Math. Z. 37, 356–380 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tuneski N.: On certain sufficient conditions for starlikeness. Internat. J. Math. & Math. Sci. 23, 521–527 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. Tuneski N.: Some simple sufficient conditions for starlikeness and convexity. Applied Mathematics Letters 22, 693–697 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tuneski N., Darus M., Gelova E.: Simple conditions for bounded turning. Rend. Sem. Mat. Univ. Padova 132, 231–238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Unkelbach, H., Über die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938).

  67. Yosida K.: Functional Analysis. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shoikhet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoikhet, D. Rigidity and Parametric Embedding of Semi-complete Vector Fields on the Unit Disk. Milan J. Math. 84, 159–202 (2016). https://doi.org/10.1007/s00032-016-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-016-0254-5

Mathematics Subject Classification

Keywords

Navigation