Skip to main content
Log in

Thoughts on the Busemann equation

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

A second-order quasi-linear partial differential equation of mixed elliptic-hyperbolic type in two independent variables, which mimics one introduced by A. Busemann in gas dynamics, and arises in the study of Minkowski spaces and in other theories, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of mathematical functions. Dover Publications, New York (1972)

    MATH  Google Scholar 

  2. Alías L.J., Chaves R.M.B., Mira P.: Björling problem for maximal surfaces in Lorentz-Minkowski space. Mat. Proc. Cambridge Philos. Soc. 134, 289–316 (2003)

    MATH  Google Scholar 

  3. Alías L.J., Palmer B.: A duality result between the minimal surface equation and the maximal surface equation. An. Acad. Bras. Cienc. 73, 161–164 (2001)

    Article  MATH  Google Scholar 

  4. R. L. Anderson, N. H. Ibragimov, Lie-Bäcklund transformations in applications. SIAM, 1979.

  5. Arnold V.I.: Mathematical methods of classical mechanics. Springer-Verlag, New York (1978)

    MATH  Google Scholar 

  6. G. Aronsson, A stream function technique for the p-harmonic equation in the plane. Department of Mathematics, University of Luleå, 1986-3.

  7. Aronsson G.: Representation of a p-harmonic function near a critical point in the plane. Manuscripta Mathematica 66, 73– (1986)

    Article  MathSciNet  Google Scholar 

  8. Aronsson G.: On certain p-harmonic functions in the plane. Manuscripta Math. 61, 79–101 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aronsson G., Lindqvist P.: On p-harmonic functions in the plane and their stream functions. J. Diff. Equations 74, 157– (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Bartnik, The existence of maximal surfaces. Miniconference on operator theory and partial differential equations (Canberra, 1983), 47–51, Proc. CentreMath. Anal. Austral. Nat. Univ., 5, Austral. Nat. Univ., Canberra, 1984.

  11. Bartnik R.: Existence of maximal surfaces in asymptotically flat spacetimes. Comm. Math. Phys. 94, 155–175 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Bartnik, Maximal surfaces and general relativity. Miniconference on geometry and partial differential equations 2 (Canberra, 1986), 24–49, Proc. Centre Math. Anal. Austral. Nat. Univ., 12, Austral. Nat. Univ., Canberra, 1987.

  13. Bartnik R.: Regularity of variational maximal surfaces. Acta Math. 166, 145–181 (1988)

    Article  MathSciNet  Google Scholar 

  14. Bartnik R., Chrusciel P.T., Murchadha O.: On maximal surfaces in asymptotically flat space-time. Comm. Math. Phys. 130, 95–109 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bartnik R., Simon L.: Spacelike hypersurfaces with prescribed boundary values and maen curvature. Comm. Math. Phys. 87, 131– (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Bers, Mathematical aspects of subsonic and transonic gas dynamics. Surveys in Applied Mathematics 3, John Wiley and Sons, 1958.

  17. A. V. Bitsadze (A. B. Бицадзе), On some problems of mixed type (Russian). Dokl. Akad. Nauk SSSR 70 (1950), 561–564.

  18. A. V. Bitsadze (A. B. Бицадзе), On the problem of equations of mixed type (Russian). Trudy Mat. Inst. Steklov 41, Izdat. Akad. Nauk SSSR 1953.

  19. A. V. Bitsadze (A. B. Бицадзе), Incorrectness of Dirichlet’s problem for the mixed type of equations in mixed regions (Russian). Dokl. Akad. Nauk SSSR 122 (1958), 167–170.

  20. A. V. Bitsadze (A. B. Бицадзе), Differential equations of mixed type. Macmillan Co., New York, 1964.

  21. Busemann A.: Die achsensymmetrische kegelige Überschallströmung. Luftfahrtforshung 19, 137–144 (1942)

    MathSciNet  Google Scholar 

  22. Busemann A.: Infinitesimale kegelige Überschallströmung. Schriften der Deutschen Akademie für Luftfahrtforshung 7, 105–121 (1943)

    MathSciNet  Google Scholar 

  23. Calabi E.: Examples of Bernstein problems for some non-linear equations. Proc. Symposia Pure Math. 15, 223–230 (1970)

    MathSciNet  Google Scholar 

  24. Cannon J.R.: A Dirichlet problem for an equation of mixed type with a discontinuous coefficient. Ann. Mat. Pura Appl. 62, 371–377 (1963)

    MathSciNet  MATH  Google Scholar 

  25. Chen W., Su N.: self-conjugate maximal surfaces in L 3. Northeast. Math. J. 14, 9–16 (1998)

    MathSciNet  Google Scholar 

  26. Cheng S.Y., Yau S.T.: Maximal spacelike surfaces in Lorentz-Minkowski spaces. Ann. Math. 104, 407–419 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cole J.D.: On a quasilinear parabolic equation occurring in aerodinamics. Quart. Appl. Math. 9, 225–236 (1951)

    MathSciNet  MATH  Google Scholar 

  28. R. Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces. Dover Publications, 1950.

  29. R. Courant, D. Hilbert, Methods of Mathematical Physics, volume II. Interscience Publishers, 1962.

  30. U. Dierkes, S. Hildebrandt, F. Sauvigny, Minimal surfaces. Springer-Verlag, 2010.

  31. Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C.: Solitons and nonlinear wave equations. Academic Press, London (1982)

    MATH  Google Scholar 

  32. Ecker K.: On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetimes. J. Austral. Math. Soc. Ser. A 55, 41–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ecker K., Huisken G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Comm. Math. Phys. 135, 595–613 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ecker K.: Interior estimates and longtime solutions for mean curvature flow of non compact spacelike hypersurfaces in Minkowski space. J. Differential Geometry 45, 481–498 (1997)

    MathSciNet  Google Scholar 

  35. Einzinger P., Raz S.: On the asymptotic theory of inhomogeneous wave tracking. Radio Science 15, 763–771 (1980)

    Article  Google Scholar 

  36. L. C. Evans, Partial Differential Equations. Graduate Studies in Math. 19, Amer. Math. Soc., 1998.

  37. Felsen L.B.: Evanescent waves. J. Opt. Soc. Am. 66, 751–760 (1976)

    Article  Google Scholar 

  38. Paul Germain, La théorie générale des mouvements coniques et ses applications à l’aérodynamique supersonique. Office National d’Etudes et de Recherches Aeronautiques, publication no. 34, 1949.

  39. Paul Germain: La théorie des mouvements homognèes et son application au calcul de certain ailes delta en régime supersonique. Recherche Aéronautique 7, 3–16 (1949)

    Google Scholar 

  40. Gu C.H.: The extremal surfaces in the 3-dimensional Minkowski space. Acta Math. Sinica (N.S.) 1(2), 173–180 (1985)

    MathSciNet  MATH  Google Scholar 

  41. Gu C.H.: A class of boundary problems for estremal surfaces of mixed type in Minkowski 3-space. J. Reine Angew. Math. 385, 195–202 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hochstadt H.: On a partial differential equation of mixed type with discontinuous coefficients. Arch. Rat. Mech. Analysis 10, 267–272 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hopf E.: The partial differential equation u t uu x µ u xx . Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Huang, Statistical Mechanics. John Wiley and Sons, 1987.

  45. Klyachin V.A.: Investigation of solutions of an equation of surfaces with zero mean curvature of mixed type in Minkowski space. Dokl. Akad. Nauk 384, 587–589 (2002)

    MathSciNet  Google Scholar 

  46. Kobayashi O.: Maximal surfaces in the 3-dimensional Minkowski space. Tokyo J. Math. 6, 297–309 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. A. Lavrentiev (M. A. Лаврентиев), A. V. Bitsadze (A. B. Бицадзе), On the problem of equations of mixed type (Russian). Dokl. Akad. Nauk SSSR 70 (1950), 373–376.

  48. M. A. Lavrentiev (M. A. Лаврентиев), B. V. Chabat (Б. B. Шабат), Effets hydrodynamiques et modèles mathématiques. Editions MIR, Moscow, 1980 (French translation of the 1977 Russian edition).

  49. J. D. Lawrence, A catalog of special plane curves. Dover Publications, 1972.

  50. Li J.: Stationary surfaces in Minkowski space. I. A representation formula. Pacific J. Math. 158, 353–363 (1993)

    MathSciNet  MATH  Google Scholar 

  51. H. W. Liepmann, A. Roshko, Elements of Gasdynamics. Dover Publications, 1957 and 2001.

  52. Lindblad H.: A remark on global existence for small initial data of the minimal surface equation in Minkowskian spacetime. Proc. Amer.Math. Soc. 321(4), 1095–1102 (2003)

    MathSciNet  Google Scholar 

  53. Liu H.L.: Minimal time-like surfaces in three-dimensional Minkowski space. J. Northeast Univ. Tech. 12, 308–310 (1991)

    MathSciNet  Google Scholar 

  54. Liu H.L.: The general Weierstrass formula for surfaces in 3-dimensional Minkowski space. Acta Math. Sinica 38, 191–199 (1995)

    MathSciNet  MATH  Google Scholar 

  55. Magnanini R., Talenti G.: On complex-valued solutions to a 2D eikonal equation. Part One: qualitative properties. Contemporary Math. 283, 203–229 (1999)

    MathSciNet  Google Scholar 

  56. Magnanini R., Talenti G.: On complex-valued solutions to a 2D eikonal equation. Part Two: existence theorems. SIAM J. Math. Anal. 34, 805–835 (2002)

    Article  MathSciNet  Google Scholar 

  57. R. Magnanini, G. Talenti, Approaching a partial differential equation of mixed elliptichyperbolic type. Pages 263–276 in Ill-posed and Inverse Problems (S.I. Kabanikin and V.G. Romanov Editors), VSP, Netherlands (2002).

  58. Magnanini R., Talenti G.: On complex-valued solutions to a 2D eikonal equation. Part Three: analysis of a Bäcklund transformation. Appl. Anal. 85(1-3), 249–276 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Magnanini R., Talenti G.: On complex-valued 2D eikonals. Part Four: continuation past a caustic. Milan J. Math. 77, 1–66 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Mazet L.: A uniqueness result for maximal surfaces in Minkowski 3-space. C. R. Acad. Sci. Paris Ser. I 344, 785–790 (2007)

    MathSciNet  MATH  Google Scholar 

  61. J. C. Nitsche, Lectures on minimal surfaces. Cambridge Univ. Press, 1989.

  62. R. Osserman, A survey of minimal surfaces. Dover Publications, 2002.

  63. Rockafellar R.T.: Convex analysis. Princeton University Press, Princeton (NJ) (1970)

    MATH  Google Scholar 

  64. C. Rogers,W. K. Schief, Bäcklund and Darboux transformations. Cambridge University Press, 2002.

  65. C. Rogers,W. K. Schief, M. E. Johnston, Bäcklund and his work: applications in soliton theory. Pages 16–55 in Geometric approaches to differential equations, P.J. Vassiliou and I.G. Lisle Editors, Cambridge University Press, 2000.

  66. C. Rogers,W. F. Shadwick, Bäcklund transformations and their applications. Academic Press, 1982.

  67. Romero A.: Simple proof of Calabi-Bernstein theorem on maximal surfaces. Proc. Amer. Math. Soc. 124, 1315–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  68. J. Serrin, Mathematical principles of classical fluid mechanics. Handbuch der Physik, volume 8 (1959), pages 125–263.

  69. M. M. Smirnov (M. M. Смирнов), Equations of mixed type. Translations of Math. Monographs no. 51, Amer. Math. Soc., 1978.

  70. Umehara M., Yamada K.: Maximal surfaces with singularities in Minkowski space. Hokkaido Math. J. 35, 13– (2006)

    MathSciNet  MATH  Google Scholar 

  71. I. Van de Woesijne, Minimal surfaces of the 3-dimensional Minkowski space. Geometry and topology of submanifolds II (Avignon, 1988), 344–369, World Sci. Publ., 1990.

  72. D. Zwillinger, Handbook of differential equations. Academic Press, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Talenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talenti, G. Thoughts on the Busemann equation. Milan J. Math. 79, 145–180 (2011). https://doi.org/10.1007/s00032-011-0153-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-011-0153-8

Mathematics Subject Classification (2010)

Keywords

Navigation