Skip to main content
Log in

EULER CHARACTERISTIC OF SPRINGER FIBERS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

For Weyl groups of classical types, we present formulas to calculate the restriction of Springer representations to a maximal parabolic subgroup of the same type. As a result, we give recursive formulas for Euler characteristics of Springer fibers for classical types. We also give tables of those for exceptional types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  2. C. de Concini, G. Lusztig, C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34.

  3. M. Ehrig, C. Stroppel, 2-row Springer fibres and Khovanov diagram algebras for type D, Canad. J. Math. 68 (2016), no. 6, 1285––1333.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Fresse, Betti numbers of Springer fibers in type A, J. Algebra 322 (2009), 2566 – 2579.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Fresse, A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups 15 (2010), 285 – 331.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Y. Fung, On the topology of components of some Springer fibers and their relation to KazhdanLusztig theory, Adv. Math. 178 (2003), 244 – 276.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Hotta, T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Hotta, N. Shimomura, The fixed point subvarieties of unipotent transformations on generalized ag varieties and the Green functions: Combinatorial and cohomological treatments centering GL n, Math. Ann. 241 (1979), 193–208.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Khovanov, Crossingless matchings and the cohomology of (n, n) Springer varieties, Commun. Contemp. Math. 6 (2004), 561–577.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Lübeck, Tables of Green functions for exceptional groups, available at http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/Green/index.html.

  11. G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981), 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Lusztig, Character sheaves, V, Adv. Math. 61 (1986), 103–155.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Lusztig, An induction theorem for Springer’s representations, in: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., Vol. 40, 2004, pp. 253–259.

  14. J. S. Milne, Étale Cohomology, Princeton Mathematical Series, Princeton University Press, Princeton, 1980.

  15. H. M. Russell, A topological construction for all two-row Springer varieties, Pacific J. Math. 253 (2011), no. 1, 221 – 255.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Shimomura, A theorem on the fixed point set of a unipotent transformation on the ag manifold, J. Math. Soc. Japan 32 (1980), no. 1, 55–64.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Shoji, On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra 7 (1979), no. 16, 1713–1745.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), 239–267.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Spaltenstein, Classes Unipotentes et Sous-groupes de Borel, Lecture Notes in Mathematics, Vol. 946, Springer-Verlag Berlin, 1982.

  20. T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Srinivasan, Green polynomials of finite classical groups, Comm. Algebra 5 (1977), no. 12, 1241–1258.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1986.

  23. C. Stroppel, B. Webster, 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv. 87 (2012), no. 2, 477–520.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. A. van Leeuwen, A RobinsonSchensted algorithm in the geometry of flags for classical groups, Ph.D. thesis, Rijksuniversiteit te Utrecht, 1989, available at http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/thesis.pdf.

  25. A. Wilbert, Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc. 370 (2018), 2707–2737.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Wilbert, Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory, arXiv:1611.09828 (2016), https://doi.org/10.1007/s00209-018-2161-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. KIM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KIM, D. EULER CHARACTERISTIC OF SPRINGER FIBERS. Transformation Groups 24, 403–428 (2019). https://doi.org/10.1007/s00031-018-9487-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9487-4

Navigation