Skip to main content
Log in

A CASSELMAN–OSBORNE THEOREM FOR RATIONAL CHEREDNIK ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We define Lie algebra cohomology associated with the half-Dirac operators for representations of rational Cherednik algebras and show that it has property described in the Casselman–Osborne Theorem by establishing a version of the Vogan's conjecture for the half-Dirac operators. Moreover, we study the relationship between Lie algebra cohomology and Dirac cohomology in analogy of the representations for semisimple Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Atiyah, W. Schmid, A geometric construction of the discrete series for semi-simple Lie groups, Invent. Math. 42 (1977), 1–62, 54 (1979), 189–192.

  2. D. Barbasch, D. Ciubotaru, P. Trapa, Dirac cohomology for graded affine Hecke algebras, Acta Math. 209 (2012), 197–227.

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu. Berest, P. Etingof, V. Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053–1088.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Casselman, M. Osborne, The n-cohomology of the representations with infinitesimal characters, Compositio Math. 31 (1975), 219–227.

    MathSciNet  MATH  Google Scholar 

  5. D. Ciubotaru, Dirac cohomology for symplectic reflection groups, Selecta Math. (N.S.) 22 (2016), no. 1, 111–144.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Etingof, E. Stoica, Unitary representations of rational Cherednik algebras, Represent. Theory 13 (2009), 349–370.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc. 35 (2003) no. 3, 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Gordon, Symplectic reflection algebras, in: Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2008.

  10. V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category \( \mathcal{O} \) for rational Cherednik algebras, Invent. Math. 154 (2003), 617–651.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-S. Huang, Dirac cohomology, elliptic representations and endoscopy, in: Representations of Reductive Groups, Progress in Mathematics, Vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 241–276.

  12. J.-S. Huang, P. Pandžzić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185–202.

    Article  MathSciNet  Google Scholar 

  13. J.-S. Huang, P. Pandžzić, Dirac cohomology for Lie Superalgebras, Transform. Group 10 (2005), 201–209.

    Article  MathSciNet  Google Scholar 

  14. J.-S. Huang, P. Pandžzić, Dirac Operators in Representation Theory, Mathematics Theory and Applications, Birkhäuser Boston: Boston, MA, 2006.

    Google Scholar 

  15. J.-S. Huang, P. Pandžzić, D. Renard, Dirac operarors and Lie algebra cohomology, arXiv:math/0503582 (2005).

  16. J.-S. Huang, P. Pandžzić, D. Renard, Dirac operators and Lie algebra cohomology, Represent. Theory 10 (2006), 299–313.

  17. J.-S. Huang, P. Pandžzić, F.-H. Zhu, Dirac cohomology, K-characters and branching laws, Amer. J. Math. 135 (2013), 1253–1269.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-S. Huang, W. Xiao, Dirac cohomology for highest weight modules, Selecta Math. 18 (2012), 803–824.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. G. Kac, P. Möseneder Frajria, P. Papi, Multiplets of representations, twisted Dirac operators and Vogan's conjecture in affine setting, Adv. Math. 217 (2008), 2485–2562.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil Theorem, Ann. Math. 74 (1960), 329–387.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Kostant, A generalization of the BottBorel–Weil Theorem and Euler number multiplets of representations, Lett. Math. Phys. 52 (2000), 61–78.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Kostant, Dirac cohomology for the cubic Dirac operator, in: Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progress in Math. Vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 69–93.

  23. R. Parthasarathy, Dirac operator and the discrete series, Ann. Math. 96 (1972), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. A. Vogan, Jr., Dirac operator and unitary representations, 3 talks at MIT Lie groups seminar, Fall of 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JING-SONG HUANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HUANG, JS., WONG, K.D. A CASSELMAN–OSBORNE THEOREM FOR RATIONAL CHEREDNIK ALGEBRAS. Transformation Groups 23, 75–99 (2018). https://doi.org/10.1007/s00031-017-9441-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9441-x

Navigation