Skip to main content
Log in

COMBINATORIAL DESCRIPTIONS OF THE CRYSTAL STRUCTURE ON CERTAIN PBW BASES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Using the theory of PBW bases, one can realize the crystal B(∞) for any semisimple Lie algebra over C using Kostant partitions as the underlying set. In fact there are many such realizations, one for each reduced expression for the longest element of the Weyl group. There is an algorithm to calculate the actions of the crystal operators, but it can be quite complicated. Here we show that, for certain reduced expressions, the crystal operators can also be described by a much simpler bracketing rule. We give conditions describing these reduced expressions, and show that there is at least one example in every type except possibly E8, F4 and G2. We then discuss some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Lie Groups and Lie Algebras. Chapters 4–6, Springer-Verlag, Berlin, 2002.

  2. N. Bourbaki, Lie Groups and Lie Algebras. Chapters 7–9, Springer-Verlag, Berlin, 2005.

  3. A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128–166.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Berenstein, A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77–128.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Claxton, P. Tingley, Young tableaux, multisegments, and PBW bases, Sém. Lothar. Combin. 73 (2015), Article B73c.

  6. The Sage Developers, Sage Mathematics Software (Version 7:4), 2016, http://www.sagemath.org.

  7. J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, Vol. 42, American Mathematical Society, Providence, RI, 2002.

  8. M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9–36.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-H. Kwon, A crystal embedding into Lusztig data of type A, arXiv:1606.06804 (2016).

  11. B. Leclerc, Dual canonical bases, quantum shuffles and q-characters, Math. Z. 246 (2004), no. 4, 691–732.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145–179.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Lusztig, Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010.

  15. A. D. Lauda, M. Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803–861.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Papi, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), no. 3, 661–665.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Reineke, On the coloured graph structure of Lusztig's canonical basis, Math. Ann. 307 (1997), no. 4, 705–723.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 209–232.

    Article  MathSciNet  MATH  Google Scholar 

  19. The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2016, http://combinat.sagemath.org.

  20. P. Tingley, Elementary construction of Lusztig's canonical basis, in: Groups, Rings, Group Rings and Hopf Algebras, dedicated to Don Passman, Contemporary Mathematics 688 (2017), 265–277.

  21. P. Tingley, B. Webster, Mirković–Vilonen polytopes and Khovanov–Lauda–Rouquier algebras, Compos. Math. 152 (2016), no. 8, 1648–1696.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PETER TINGLEY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SALISBURY, B., SCHULTZE, A. & TINGLEY, P. COMBINATORIAL DESCRIPTIONS OF THE CRYSTAL STRUCTURE ON CERTAIN PBW BASES. Transformation Groups 23, 501–525 (2018). https://doi.org/10.1007/s00031-017-9434-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9434-9

Navigation