Skip to main content
Log in

DIAGRAM CATEGORIES FOR Uq-TILTING MODULES AT ROOTS OF UNITY

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give a diagrammatic presentation of the category of U q (\( \mathfrak{s}\mathfrak{l} \) 2)-tilting modules for q being a root of unity and introduce a grading on . This grading is a “root of unity phenomenon” and might lead to new insights about link and 3-manifold invariants deduced from . We also give a diagrammatic category for the (graded) projective endofunctors on , indicate how our results could generalize, and collect some “well-known” facts to give a reasonably self-contained exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159.

  2. H. H. Andersen, The strong linkage principle for quantum groups at roots of 1, J. Algebra 260 (2003), no. 1, 2–15.

  3. H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of Quantum Groups at a p-th Root of Unity and of Semisimple Groups in Characteristic p: Independence of p, Astérisque 220 (1994).

  4. H. H. Andersen, M. Kaneda, Rigidity of tilting modules, Mosc. Math. J. 11 (2011), no. 1, 1–39.

  5. H. H. Andersen, P. Polo, K. Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1–59.

  6. I. Assem, D. Simson, A. Skowronski, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Mathematical Society Student Texts, Vol. 65, Cambridge University Press, 2006.

  7. A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.

  8. J. N. Bernstein, I. Frenkel, M. Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl(2)) via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199–241.

  9. J. N. Bernstein, S. I. Gel’fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 4, 245–285.

  10. T. Braden, Perverse sheaves on Grassmannians, Canad. J. Math. 54 (2002), no. 3, 493–532.

  11. J. Brundan, C. Stroppel, Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math. 231 (2012), no. 2, 709–773.

  12. J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra I: cellularity, Mosc. Math. J. 11 (2011), no. 4, 685–722.

  13. J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra II: Koszulity, Transform. Groups 15 (2010), no. 1, 1–45.

  14. J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra III: category O, Represent. Theory 15 (2011), 170–243.

  15. J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. 14 (2012), no. 2, 373–419.

  16. Y. Chen, M. Khovanov, An invariant of tangle cobordisms via subquotients of arc rings, Fund. Math. 225 (2014), 23–44.

  17. B. Elias, The two-color Soergel calculus, preprint, arXiv:1308.6611 (2013).

  18. B. Elias, M. Khovanov, Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. 2010 (2010), Article ID 978635.

  19. B. Elias, N. Libedinsky, Soergel bimodules for universal Coxeter groups, preprint, arXiv:1401.2467 (2014).

  20. B. Elias, G. Williamson, Diagrammatics for Coxeter groups and their braid groups, preprint, arXiv:1405.4928 (2014).

  21. B. Elias, G. Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. (2) 180 (2014), no. 3, 1089–1136.

  22. B. Elias, G. Williamson, Soergel calculus, preprint, arXiv:1309.0865 (2013).

  23. S. Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60.

  24. J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \( \mathcal{O} \), Graduate Studies in Mathematics, Vol. 94, American Mathematical Society, Providence, RI, 2008.

  25. J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, Vol. 6, American Mathematical Society, Providence, RI, 1996.

  26. J. C. Jantzen, Representations of Algebraic Groups, Mathematical Surveys and Monographs 107, 2nd ed., American Mathematical Society, Providence, RI, 2003.

  27. A. Joyal, R. Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55–112.

  28. M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1996), no. 1, 21–62.

  29. D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras I–IV, J. Amer. Math. Soc. 6 (1994), no. 4, 905–947, 949–1011 and J. Amer. Math. Soc. 7 (1994), no. 2, 335–381, 383–453.

  30. M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426.

  31. M. Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741.

  32. M. Khovanov, Categorifications from planar diagrammatics, Japanese J. Math. 5 (2010), no. 2, 153–181.

  33. M. Khovanov, A. D. Lauda, A categorification of quantum \( \mathfrak{s}\mathfrak{l} \) n , Quantum Topol. 2 (2010), no. 1, 1–92.

  34. M. Khovanov, A. D. Lauda, M. Mackaay, M. Stošić, Extended Graphical Calculus for Categorified Quantum \( \mathfrak{s}\mathfrak{l} \) 2, Mem. Amer. Math. Soc., Vol. 2191029, 2012.

  35. M. Khovanov, L. Rozansky, Matrix factorizations and link homology I, Fund. Math. 199 (2008), no. 1, 1–91.

  36. M. Khovanov, P. Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), no. 1, 203–271.

  37. A. D. Lauda, An introduction to diagrammatic algebra and categorified quantum sl(2), Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 2, 165–270.

  38. A. D. Lauda, H. Queffelec, D. E. V. Rose, Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m), Algebr. Geom. Topol. 15 (2015), no. 5, 2517–2608.

  39. N. Libedinsky, Presentation of right-angled Soergel categories by generators and relations, J. Pure Appl. Algebra 214 (2010), no. 12, 2265–2278.

  40. G. Lusztig, Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser, Basel, 2010.

  41. G. Lusztig, Modular representations and quantum groups, in: Classical Groups and Related Topics (Beijing, 1987), Contemp. Math. 82 (1989), pp. 59–77.

  42. G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1–3, 89–113.

  43. G. Lusztig, Some problems in the representation theory of finite Chevalley groups, Proc. Sympos. Pure Math. 37 (1980), 313–317.

  44. M. Mackaay, The \( \mathfrak{s}\mathfrak{l} \)(N)-web algebras and dual canonical bases, J. Algebra 409 (2014), 54–100.

  45. M. Mackaay, W. Pan, D. Tubbenhauer, The \( \mathfrak{s}\mathfrak{l} \) 3-web algebra, Math. Z. 277 (2014), no. 1–2, 401–479.

  46. V. Mazorchuk, S. Ovsienko, C. Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1129–1172.

  47. M. Müger, From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Alg. 180 (2003), no. 1–2, 81–157.

  48. J. Paradowski, Filtration of modules over the quantum algebra, Proc. Sympos. Pure Math., Vol. 56, Part 2 (1994), 93–108.

  49. H. Queffelec, D. E. V. Rose, The \( \mathfrak{s}\mathfrak{l} \) n foam 2-category: A combinatorial formulation of Khovanov–Rozansky homology via categorical skew-Howe duality, preprint, arXiv:1405.5920 (2014).

  50. C. M. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209–223.

  51. R. Rouquier, 2-Kac-Moody algebras, preprint, arXiv:0812.5023 (2008).

  52. S. F. Sawin, Quantum groups at roots of unity and modularity, J. Knot Theory Ramifications 15 (2006), no. 10, 1245–1277.

  53. W. Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432–448 (electronic).

  54. W. Soergel, Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445.

  55. W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114 (electronic).

  56. W. Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992), 49–74.

  57. C. Stroppel, Categorification of the Temperley-Lieb category, tangles and cobordisms via projective functors, Duke Math. J. 126 (2005), no. 3, 547–596.

  58. C. Stroppel, Category O: Gradings and translation functors, J. Algebra 268 (2003), no. 1, 301–326.

  59. C. Stroppel, TQFT with corners and tilting functors in the Kac-Moody case, preprint, arXiv:math/0605103 (2006).

  60. D. Tubbenhauer, \( \mathfrak{s}\mathfrak{l} \) 3-web bases, intermediate crystal bases and categorification, J. Algebr. Combin. 40(4) (2014), no. 4, 1001–1076.

  61. D. Tubbenhauer, \( \mathfrak{s}\mathfrak{l} \) n -webs, categorification and Khovanov-Rozansky homologies, preprint, arXiv:1404.5752 (2014).

  62. V. Turaev, Quantum Invariants of Knots and 3-Manifolds, 2nd revised ed., de Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter, Berlin, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. H. ANDERSEN or D. TUBBENHAUER.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ANDERSEN, H.H., TUBBENHAUER, D. DIAGRAM CATEGORIES FOR Uq-TILTING MODULES AT ROOTS OF UNITY. Transformation Groups 22, 29–89 (2017). https://doi.org/10.1007/s00031-016-9363-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9363-z

Keywords

Navigation