Skip to main content
Log in

FAMILIES OF GROUP ACTIONS, GENERIC ISOTRIVIALITY, AND LINEARIZATION

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Our base field is the field ℂ of complex numbers. We study families of reductive group actions on \( {\mathbb A} \)2 parametrized by curves and show that every faithful action of a non-finite reductive group on \( {\mathbb A} \)3 is linearizable, i.e., G-isomorphic to a representation of G. The difficulties arise for non-connected groups G.

We prove a Generic Equivalence Theorem which says that two affine morphisms 𝑝: SY and q : ΤY of varieties with isomorphic (closed) fibers become isomorphic under a dominant étale base change φ: UY . A special case is the following result. Call a morphism φ: XY a fibration with fiber F if φ is at and all fibers are (reduced and) isomorphic to F. Then an affine fibration with fiber F admits an étale dominant morphism μ: UY such that the pull-back is a trivial fiber bundle: U × Y X ≅ U × F.

As an application we give short proofs of the following two (known) results:

(a) Every affine A1-_bration over a normal variety is locally trivial in the Zariskitopology (see [KW85]).

(b) Every affine A2-_bration over a smooth curve is locally trivial in the ZariskiTopology (see [KZ01]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bass, E. H. Connell, D. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279-299.

  2. H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 463-482.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.-P. Furter, H. Kraft, On the geometry of the automorphism group of affine n-space, 2013, to appear.

  4. J.-P. Furter, S. Maubach, A characterization of semisimple plane polynomial automorphisms, J. Pure Appl. Algebra 214 (2010), no. 5, 574-583.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russian transl.: Ρ. Ηαρτσηορν, Αλγεβραιθεσκα _ γεομετρι_, Μιρ, M., 1981.

  6. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.

  7. T. Kambayashi, On the absence of nontrivial separable forms of the affine plane, J. Algebra 35 (1975), 449-456.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), no. 2, 439-451.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Kambayashi, D. Wright, Flat families of affine lines are affine-line bundles, Illinois J. Math. 29 (1985), no. 4, 672-681.

    MATH  MathSciNet  Google Scholar 

  10. S. Kaliman, M. Koras, L. Makar-Limanov, P. Russell, ℂ*-actions on3 are linearizable, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 63-71 (electronic).

  11. S. Kaliman, M. Zaidenberg, Families of affine planes: the existence of a cylinder, Michigan Math. J. 49 (2001), no. 2, 353-367.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kaliman, M. Zaidenberg, Vénéreau polynomials and related fiber bundles, J. Pure Appl. Algebra 192 (2004), no. 1-3, 275-286.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Knop, Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), no. 1, 217-220.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Kraft, Challenging problems on affine n-space, in: Séminaire Bourbaki, Vol. 1994/95, Astérisque 237 (1996), Exp. No. 802, 5, pp. 295-317.

  15. H. Kraft, F. Kutzschebauch, Equivariant affine line bundles and linearization, Math. Res. Lett. 3 (1996), no. 5, 619-627.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Kraft, V. L. Popov, Semisimple group actions on the three-dimensional affine space are linear, Comment. Math. Helv. 60 (1985), no. 3, 466-479.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Kraft, G. W Schwarz, Reductive group actions with one-dimensional quotient, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 1-97.

  18. [Kum02] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.

  19. D. Lewis, Vénéreau-type polynomials as potential counterexamples, J. Pure Appl. Algebra 217 (2013), no. 5, 946-957.

  20. P. Russell, Some formal aspects of the theorems of Mumford-Ramanujam, in: Algebra, Arithmetic and Geometry, Part II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math., Vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 557-584.

  21. A. Sathaye, Polynomial ring in two variables over a DVR: a criterion, Invent. Math. 74 (1983), no. 1, 159-168.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. W. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 2, 89-94.

    MATH  Google Scholar 

  23. I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) 25 (1966), no. 1-2, 208-212.

  24. И. P. ШафаревиЧ, О некоmoрyh beskoneqnomernyh gruppah, II, Izv. AN SSSR, Ser. mat. 45 (1981), vyp. 1, 214-226. Engl. transl.: I. R. Shafarevich, On some infinite-dimensional groups, II, Math. USSR-Izv. 18 (1982), no. 1, 185-194.

  25. I. R. Xafareviq, Pis ~ mo v redakci_, Izv. AN SSSR. Ser. mat. 59 (1995), vyp. 3, 224. [I. R. Shafarevich, Letter to the Editors, Izv. Akad. Nauk SSSR, Ser. mat. 59 (1995), no. 3, 224 (Russian)].

  26. B. _. Ve_sfe_ler, I. V. Dolgaqev, Unipotentnye shemy grupp nad celostnymi kol ~ cami, Izv. AN SSSR, Ser. mat. 38 (1974), vyp. 4, 757-799. Engl. transl.: B. J. Veĭsfeĭler, I. V. Dolgačev, Unipotent group chemes over integral rings, Math. USSR-Izv. 8 (1974), no. 4, 761-800.

  27. A. van den Essen, Ha Huy Vui, H. Kraft, P. Russell, D. Wright, Polynomial Automorphisms and Related Topics, Lecture notes from the International School and Workshop (ICPA2006) Hanoi, October 9-20, 2006, H. Bass, Nguyen Van Chau, S. Maubach Eds., Publishing House for Science and Technology, Hanoi, 2007.

  28. W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33-41.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HANSPETER KRAFT.

Additional information

*Supported by SNF (Schweizerischer Nationalfonds).

**Supported by NSERC, Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KRAFT, H., RUSSELL, P. FAMILIES OF GROUP ACTIONS, GENERIC ISOTRIVIALITY, AND LINEARIZATION. Transformation Groups 19, 779–792 (2014). https://doi.org/10.1007/s00031-014-9274-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9274-9

Keywords

Navigation