Skip to main content
Log in

Dissipation enhancement by transport noise for stochastic p-Laplace equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The stochastic p-Laplace equation with multiplicative transport noise is studied on the torus \(\mathbb {T}^d\, (d\ge 2)\). It is shown that the dissipation is enhanced by transport noise in both the averaged sense and the pathwise sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224(3), 1161–1204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure enhanced dissipation and uniform-in-diffusivity exponential mixing for advection-diffusion by stochastic Navier-Stokes. Probab. Theory Relat. Fields 179(3–4), 777–834 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure exponential mixing of passive scalars by the stochastic Navier-Stokes equations. Ann. Probab. 50(1), 241–303 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F., Nadirashvili, N.: Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Comm. Math. Phys. 253(2), 451–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzeźniak, Z., Flandoli, F., Maurelli, M.: Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity. Arch. Ration. Mech. Anal. 221(1), 107–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brzeźniak, Z., Maurelli, M.: Existence for stochastic 2D Euler equations with positive \(H^{-1}\) vorticity. arXiv:1906.11523v2

  7. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 168(2), 643–674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coti Zelati, M., Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation timescales and mixing rates. Commun. Pure Appl. Math. 73(6), 1205–1244 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, Y., Hu, B., Xu, X.: Dissipation enhancement by mixing for evolution \(p\)–Laplacian advection equations. arXiv:2104.12578v1

  10. Feng, Y., Iyer, G.: Dissipation enhancement by mixing. Nonlinearity 32(5), 1810–1851 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flandoli, F., Galeati, L., Luo, D.: Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations. J. Evol. Equ. 21(1), 567–600 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flandoli, F., Galeati, L., Luo, D.: Delayed blow-up by transport noise. Comm. Partial Differ. Equ. 46(9), 1757–1788 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flandoli, F., Galeati, L., Luo, D.: Quantitative convergence rates for scaling limit of SPDEs with transport noise. arXiv:2104.01740v2

  14. Flandoli, F., Luo, D.: \(\rho \)-white noise solution to 2D stochastic Euler equations. Probab. Theory Relat. Fields 175(3–4), 783–832 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flandoli, F., Luo, D.: Convergence of transport noise to Ornstein-Uhlenbeck for 2D Euler equations under the enstrophy measure. Ann. Probab. 48(1), 264–295 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flandoli, F., Luo, D.: High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations. Probab. Theory Relat. Fields 180(1–2), 309–363 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galeati, L.: On the convergence of stochastic transport equations to a deterministic parabolic one. Stoch. Partial Differ. Equ. Anal. Comput. 8(4), 833–868 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Gess, B., Yaroslavtsev, I.: Stabilization by transport noise and enhanced dissipation in the Kraichnan model. arXiv:2104.03949

  19. Iyer, G., Xu, X., Zlatoš, A.: Convection-induced singularity suppression in the Keller-Segel and other non-linear PDEs. Trans. Am. Math. Soc. 374(9), 6039–6058 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lang, O., Crisan, D.: Well-posedness for a stochastic 2D Euler equation with transport noise. Stoch. PDE Anal. Comp. (2022). https://doi.org/10.1007/s40072-021-00233-7

    Article  Google Scholar 

  21. Liu, W., Röckner, M.: Stochastic partial differential equations: an introduction. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  22. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems, progress in nonlinear differential equations and their applications, vol. 16. Birkhäuser Verlag, Basel (1995)

    MATH  Google Scholar 

  23. Luo, D.: Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system. Nonlinearity 34(12), 8311–8330 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zlatoš, A.: Diffusion in fluid flow: dissipation enhancement by flows in 2D. Commun. Partial Differ. Equ. 35(3), 496–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for valuable comments which helped them to improve the paper.

Funding

Z.D. and D.L. would like to thank the financial supports of the National Key R &D Program of China (No. 2020YFA0712700) and the National Natural Science Foundation of China (Nos. 11931004, 12090014). D.L. also thanks the support of the Youth Innovation Promotion Association, CAS (Y2021002).

Author information

Authors and Affiliations

Authors

Contributions

DL and BT wrote the main manuscript text and ZD checked the whole paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dejun Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Variational solutions of stochastic p-Laplace equations with transport noise

Appendix A: Variational solutions of stochastic p-Laplace equations with transport noise

In this part we consider general stochastic p-Laplace evolution equations of the form

$$\begin{aligned} d u = \Delta _p u \, d t + \sum _{n=0}^{+\infty } \xi _{n} \cdot \nabla u \circ d B_t^{n}, \end{aligned}$$
(A.1)

where \(\{B^n: n \in \mathbb {N}\}\) is a family of independent standard Brownian motions on some filtered probability space \((\Omega , \mathcal {F}, (\mathcal {F}_t), \mathbb {P})\), and \(\{\xi _{n}: n \in \mathbb {N}\}\) are some divergence free vector fields on \(\mathbb {T}^d\) satisfying

$$\begin{aligned} \eta :=\sum _{n=0}^{+\infty } \Vert \xi _{n} \Vert _{L^{\frac{2p}{p-2}}(\mathbb {T}^d)}^{2} <+\infty . \end{aligned}$$
(A.2)

In Itô form, the above equation (A.1) reads as

$$\begin{aligned} d u = \Delta _p u \, d t + S(u) \, d t + \sum _{n=0}^{+\infty } \xi _{n} \cdot \nabla u \, d B_t^{n}, \end{aligned}$$
(A.3)

where the Stratonovich-Itô correction term is now

$$\begin{aligned} S(u)=\frac{1}{2} \sum _{n=0}^{+\infty } \xi _{n} \cdot \nabla \left( \xi _{n} \cdot \nabla u \right) . \end{aligned}$$
(A.4)

We will prove the existence and uniqueness of its variational solution u(t) and show that u(t) satisfies the energy identity (1.2).

Definition A.1

A continuous \(L^2(\mathbb {T}^d)\) valued \(\mathcal {F}_t\)-adapted process u(t) is called a variational solution of (A.3), if u belongs to \( L^p (\Omega ; L^p (0, T; W^{1, p}))\) and \(L^2 (\Omega ; C ([0, T]; L^2(\mathbb {T}^d))) \), and

$$\begin{aligned} u (t) = u_0 + \int _0^t \Delta _p u \, \, d s + \int _0^t S(u) \, \, d s + \sum _{n=0}^{+\infty } \int _0^t \xi _{n} (x) \cdot \nabla u (s) \, d B_s^{n} \end{aligned}$$
(A.5)

holds in \(W^{- 1, \frac{p}{p - 1}} (\mathbb {T}^d)\) for any \(t \in [0, T]\) and \(\mathbb {P}\)-a.s.

Let \(H=L^2(\mathbb {T}^d), V=W^{1, p}(\mathbb {T}^d), V^{*}=W^{-1, \frac{p}{p-1}}.\) Let U be a separable Hilbert space, and \(\left\{ j_{n}, n \in \mathbb {N}\right\} \) be a complete orthonormal basis of U. \(L_2 (U, H)\) is the space of Hilbert-Schmidt operators from U to H. Define the operators \(A: V \rightarrow V^{*}\) and \(B: V \rightarrow L_2 (U, H)\) as below:

$$\begin{aligned} \begin{aligned}&A( u) :=\Delta _p u +\frac{1}{2} \sum _{n =0}^{+\infty } \xi _{n} \cdot \nabla \left( \xi _{n} \cdot \nabla u \right) , \quad \forall \, u \in V,\\&B (u) (j_{n}) :=\xi _{n} \cdot \nabla u, \quad \forall \, u \in V, \forall \, n \in \mathbb {N}. \end{aligned} \end{aligned}$$
(A.6)

In order to prove the existence of variational solutions to (A.3), we need to verify the conditions in [21, Theorem 4.2.4], listed below:

  1. (H1)

    (Hemicontinuity) For all \(u, v, w \in V,\) the map

    $$\begin{aligned} \mathbb {R}\ni \lambda \rightarrow {}_{V^{*}}\langle A(u+\lambda v ), w\rangle _V \end{aligned}$$

    is continuous.

  2. (H2)

    (Weak monotonicity) For all \(u, v\in V,\)

    $$\begin{aligned} 2 {}_{V^{*}}\langle A( u)-A( v), u-v \rangle _V +\Vert B(u)-B(v)\Vert _{L_2(U, H)}^2 \le 0. \end{aligned}$$
  3. (H3)

    (Coercivity) There exists \(c_1>0\), such that for all \(u \in V, t \in [0, T],\)

    $$\begin{aligned} 2 {}_{V^*}\langle A( u), u \rangle _V + \Vert B(u)\Vert _{L_2(U, H)}^2 \le -c_1 \Vert u \Vert _V^2. \end{aligned}$$
  4. (H4)

    (Boundedness) There exists a constant \(c_2 >0\) such that for all \(u \in V, t \in [0, T],\)

    $$\begin{aligned} \Vert A(u) \Vert _{V^{*}} \le c_2 \left( 1+\Vert u\Vert _V^{p-1} \right) . \end{aligned}$$

Theorem A.2

If \(u_0 \in L^2 \left( \Omega , \mathcal {F}_0, \mathbb {P};L^2({\mathbb {T}^d}) \right) \)and \(\{\xi _n\}_{n \ge 1}\) satisfies (A.2), then there exist a unique solution \(\{ u(t) \}_{t \in [0,T]}\) to (A.3) in the sense of Definition A.1. Furthermore, the energy identity

$$\begin{aligned} \Vert u (t) \Vert _{L^2}^2 = \Vert u_0 \Vert _{L^2}^2 - 2 \int _0^t \Vert \nabla u \Vert _{L^p}^p \, d s \end{aligned}$$

holds \(\mathbb {P}\)-a.s. for all \(t \ge 0\).

Proof

Since \(\xi \) is spatially divergence free, for all \( u, v \in V,\) we have

$$\begin{aligned} {}_{V^{*}} \langle A (u), v \rangle _V = - \int _{\mathbb {T}^d} | \nabla u |^{p - 2} \nabla u \cdot \nabla v\, d x - \frac{1}{2} \sum _{n=0}^{+\infty } \int _{\mathbb {T}^d} (\xi _{n} \cdot \nabla u) (\xi _{n} \cdot \nabla v)\, d x.\nonumber \\ \end{aligned}$$
(A.7)

By Hölder inequality,

$$\begin{aligned} \begin{aligned} |{}_{V^{*}} \langle A (u), v \rangle _V |&\le \Vert \nabla u \Vert _{L^p}^{p - 1} \Vert \nabla v \Vert _{L^p} + \frac{1}{2} \Vert \nabla u \Vert _{L^p} \Vert \nabla v \Vert _{L^p} \! \sum _{n=0}^{+ \infty } \! \left[ \int _{\mathbb {T}^d}| \xi _{n} |^{\frac{2 p}{p - 2}}\, d x \right] ^{\!\! \frac{p - 2}{p}} \\&= \Vert \nabla u \Vert _{L^p}^{p - 1} \Vert \nabla v \Vert _{L^p} + \frac{\eta }{2} \Vert \nabla u \Vert _{L^p} \Vert \nabla v \Vert _{L^p}. \end{aligned} \end{aligned}$$

As a result, the operator \(A: V \rightarrow V^{*} \) is well-defined, and for any \(u \in V\)

$$\begin{aligned} \Vert A (u) \Vert _{V^{*}} \le \Vert u \Vert _{W^{1, p}}^{p - 1} + \frac{\eta }{2} \Vert u \Vert _{W^{1, p}} \le C_{p,\eta } \left( 1+\Vert u \Vert _{W^{1, p}}^{p - 1} \right) ,\end{aligned}$$

where \(C_{p,\eta }>0\) is some constant, so condition (H4) is satisfied.

By the equality (A.7), to prove that operator A satisfies condition (H1), we only need to show for fixed \(u, v, w \in V, \) for \( \lambda \in \mathbb {R}, |\lambda |<1,\)

$$\begin{aligned} \begin{aligned} \lim _{\lambda \rightarrow 0}&\int _{\mathbb {T}^d} \left( |\nabla (u+\lambda v)|^{p-2} \nabla (u+\lambda v) \cdot \nabla w -|\nabla u|^{p-2} \nabla u \cdot \nabla w \right) \, d x\\ +&\, \frac{\lambda }{2} \sum _{n=0}^{+\infty } \int _{\mathbb {T}^d} \left( \xi _{n} \cdot \nabla v \right) (\xi _{n} \cdot \nabla w) \, d x =0. \end{aligned} \end{aligned}$$

By Hölder inequality and the condition (A.2), the second term tends to zero as \(\lambda \rightarrow 0.\) Since obviously, the integrands in the first term converge to zero as \(\lambda \rightarrow 0, \, d x\) -a.s., we only have to find a dominating function to apply Lebesgue’s dominated convergence theorem. But

$$\begin{aligned} |\nabla (u+\lambda v)|^{p-1} \cdot |\nabla w | \le 2^{p-2} \left( |\nabla u|^{p-1}+ | \nabla v|^{p-1} \right) \, |\nabla w |, \end{aligned}$$

so the first term tends to zero as \(\lambda \rightarrow 0.\) Condition (H1) is satisfied. Next,

$$\begin{aligned} \Vert B (u) \Vert _{L_2 (U, H)}^2: = \sum _{n=0}^{+\infty } \int _{\mathbb {T}^d} (B (u) (j_{n}))^2\, d x = \sum _{n=0}^{+\infty } \int _{\mathbb {T}^d} (\xi _{n} \cdot \nabla u)^2\, d x \end{aligned}$$
(A.8)

for all \(u \in V\). By Hölder inequality and condition (A.2), the operator B is well-defined.

By (A.7), (A.8), and Proposition 2.1, for fixed \(u, v \in V, \) we have

$$\begin{aligned} \begin{aligned}&2{}_{V^{*}} \langle A (u) - A (v), u - v \rangle _V + \Vert B (u) - B (v) \Vert _{L_2 (U, H)}^2 \\&\quad = 2{}_{V^{*}} \langle \Delta _p u - \Delta _p v, u - v \rangle _V \le 0 \end{aligned} \end{aligned}$$

and

$$\begin{aligned} 2{}_{V^{*}} \langle A (v), v \rangle _V + \Vert B (v) \Vert _{L_2 (U, H)}^2 ={}_{V^{*}} \langle \Delta _p v, v \rangle _V \le - c_2 \Vert v \Vert _{W^{1, p}}^p, \end{aligned}$$

hence the conditions (H2) and (H3) are satisfied.

The existence and uniqueness of (A.3) are consequence of [21, Theorem 4.2.4]. Because of \(\mathbb {E}\left[ \Vert u(t)\Vert _{L^2}^2 \right] \le \mathbb {E}\left[ \Vert u_0\Vert _{L^2}^2 \right] <+\infty ,\) applying [21, Theorem 4.2.5], we know solution u(t) is continuous in \(L^{2}(\mathbb {T}^d), \) and \(\mathbb {P}\)-a.s., for all \(t \in [0, T]\), the energy identity

$$\begin{aligned} \Vert u (t) \Vert _{L^2}^2 = \Vert u_0 \Vert _{L^2}^2 - 2 \int _0^t \Vert \nabla u\Vert _{L^p}^p \, \, d s \end{aligned}$$

holds. By the divergence free property of \(\xi _{n}\), the noise part vanishes in energy type computations. So the above energy estimate is similar to the deterministic system. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Luo, D. & Tang, B. Dissipation enhancement by transport noise for stochastic p-Laplace equations. Nonlinear Differ. Equ. Appl. 30, 5 (2023). https://doi.org/10.1007/s00030-022-00811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00811-1

Keywords

Mathematics Subject Classification

Navigation