Skip to main content
Log in

Normalized solutions of mass subcritical Schrödinger equations in exterior domains

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the nonlinear Schrödinger equation with \(L^2\)-norm constraint:

$$\begin{aligned} \left\{ \begin{array}{lll} -\Delta u=\lambda u+|u|^{p-2}u\quad &{}\text {in}\ ~~\Omega ,\\ u= 0 &{}\text {on}\ ~\partial \Omega ,\\ \int _{\Omega }|u|^2dx=a^2, \end{array}\right. \end{aligned}$$

where \(N\ge 3\), \(\Omega \subseteq \mathbb {R}^N\) is an exterior domain, i.e., \(\Omega \) is an unbounded domain with \(\mathbb {R}^N{\setminus }\overline{\Omega }\) non-empty and bounded, \(a>0\), \(2<p<2+\frac{4}{N}\), and \(\lambda \in \mathbb {R}\) is Lagrange multiplier, which appears due to the mass constraint \(\Vert u\Vert _{L^2(\Omega )}=a\). We use Brouwer degree, barycentric functions and minimax method to prove that for any \(a>0\), there is a positive solution \(u\in H^1_0(\Omega )\) for some \(\lambda <0\) if \(\mathbb {R}^N{\setminus }\Omega \) is contained in a small ball. In addition, if we remove the restriction on \(\Omega \) but impose that \(a>0\) is small, then we also obtain a positive solution \(u\in H^1_0(\Omega )\) for some \(\lambda <0\). If \(\Omega \) is the complement of unit ball in \(\mathbb {R}^N\), then for any \(a>0\), we get a positive radial solution \(u\in H^1_0(\Omega )\) for some \(\lambda <0\) by Ekeland variational principle. Moreover, we use genus theory to obtain infinitely many radial solutions \(\{(u_n,\lambda _n)\}\) with \(\lambda _n<0\), \(I_p(u_n)<0\) for \(n\ge 1\) and \(I_p(u_n)\rightarrow 0^-\) as \(n\rightarrow \infty \), where \(I_p\) is the corresponding energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri, A., Lions, P.-L.: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(3), 365–413 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial Differ. Equ. (2021). https://doi.org/10.1080/03605302.2021.1893747

  3. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., De Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100(1), 75–83 (2013)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Cerami, G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Ration. Mech. Anal. 99(4), 283–300 (1987)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

  7. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  Google Scholar 

  8. Cerami, G., Passaseo, D.: Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains. Nonlinear Anal. 24(11), 1533–1547 (1995)

    Article  MathSciNet  Google Scholar 

  9. Cerami, G., Passaseo, D.: The effect of concentrating potentials in some singularly perturbed problems. Calc. Var. Partial. Differ. Equ. 17(3), 257–281 (2003)

    Article  MathSciNet  Google Scholar 

  10. Chang, K.C.: Methods in Nonlinear Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb. Sect. A 93(1–2), 1–14 (1982/83)

  12. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  13. Gou, T., Zhang, Z.: Normalized solutions to the Chern–Simons–Schrödinger system. J. Funct. Anal. 280(5), 108894, 65pp (2021)

  14. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  15. Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)

  16. Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc Variat. Partial Differ. Equ. 59(5), Paper No. 174, 43 pp (2020)

  17. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbb{R}^n\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  Google Scholar 

  18. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The Locally compact case. II. Anna. de l’Inst. Henri Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

  19. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)

    Article  Google Scholar 

  20. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Variat. Partial Differ. Equ. 59(4), Paper No. 143, 35 pp (2020)

  21. Molle, R., Passaseo, D.: Multiple solutions of nonlinear elliptic Dirichlet problems in exterior domains. Nonlinear Anal. 39(4), Ser. A: Theory Methods, 447–462 (2000)

  22. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    Article  MathSciNet  Google Scholar 

  23. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Variat. Partial Differ. Equ. 56(5), Paper No. 133, 27 pp (2017)

  24. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  25. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/83)

  26. Willem, M.: Minimax Theorems. Birkhäuser Boston (1996)

  27. Zhang, Z.: Variational, Topological, and Partial Order Methods with their Applications. Springer, Berlin (2013)

  28. Zhang, Z., Zhang, Z.: Normalized solutions to p-laplacian equations with combined nonlinearities, preprint, arXiv

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China(11771428, 12031015, 12026217, 11871302).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, Z. Normalized solutions of mass subcritical Schrödinger equations in exterior domains. Nonlinear Differ. Equ. Appl. 29, 32 (2022). https://doi.org/10.1007/s00030-022-00764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00764-5

Keywords

Mathematics Subject Classification

Navigation