Skip to main content
Log in

Finite collineation groups and birational rigidity

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We classify finite groups G in \({\mathrm {PGL}}_{4}({\mathbb {C}})\) such that \({\mathbb {P}}^3\) is G-birationally rigid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayle, L.: Classification des varietes complexes projectives de dimension trois dont une section hyperplane generale est une surface d’Enriques. J. Reine Angew. Math. 449, 9–63 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Blanc, J., Lamy, S.: Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links. Proc. Lond. Math. Soc. 104, 1047–1075 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Blichfeldt, H.: The finite, discontinuous primitive groups of collineations in four variables. Math. Ann. 60(2), 204–231 (1905)

    MathSciNet  MATH  Google Scholar 

  4. Blichfeldt, H.: Finite Collineation Groups. University of Chicago Press, Chicago (1917)

    Google Scholar 

  5. Brown, G., Kasprzyk, A.: Graded Ring Database (2005). http://www.grdb.co.uk

  6. Cheltsov, I.: Birationally rigid Fano varieties. Russ. Math. Surv. 60, 875–965 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Cheltsov, I., Shramov, C.: Three embeddings of the Klein simple group into the Cremona group of rank three. Transform. Groups 17, 303–350 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Cheltsov, I., Shramov, C.: Five embeddings of one simple group. Trans. AMS 366, 1289–1331 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Cheltsov, I., Shramov, C.: Two rational nodal quartic threefolds. Q. J. Math. 67, 573–601 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Cheltsov, I., Shramov, C.: Cremona Groups and the Icosahedron. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  11. Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  12. Corti, A.: Singularities of linear systems and 3-fold birational geometry. L.M.S. Lect. Note Ser. 281, 259–312 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Corti, A., Kollár, J., Smith, K.: Rational and Nearly Rational Varieties. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Corti, A., Pukhlikov, A., Reid, M.: Fano 3-fold hypersurfaces. L.M.S. Lect. Note Ser. 281, 175–258 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Cutkosky, S.: Elementary contractions of Gorenstein threefolds. Math. Ann. 280, 521–525 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Cutrone, J., Limarzi, M., Marshburn, N.: A weak Fano threefold arising as a blowup of a curve of genus 5 and degree 8 on \({\mathbb{P}}^3\). Eur. J. Math. 5, 763–770 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Cutrone, J., Marshburn, N.: Towards the classification of weak Fano threefolds with \(\rho =2\). Cent. Eur. J. Math. 11, 1552–1576 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Dolgachev, I.: Invariant stable bundles over modular curves \(X(p)\). Contemp. Math. 224, 65–99 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Dolgachev, I.: Quartic surfaces with icosahedral symmetry. Adv. Geom. 18(1), 119–132 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Edge, W.: Humbert’s plane sextics of genus 5. Proc. Camb. Philos. Soc. 47, 483–495 (1951)

    MathSciNet  MATH  Google Scholar 

  21. Eklund, D.: Curves on Heisenberg invariant quartic surfaces in projective 3-space. Eur. J. Math. 4(3), 931–952 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Hidalgo, R., Reyes, S.: Fields of moduli of classical Humbert curves. Q. J. Math. 63, 919–930 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Humbert, G.: Sur un complexe remarquable de coniques. J. Ecole Polyth 64, 123–149 (1894)

    MATH  Google Scholar 

  24. Iskovskikh, V., Prokhorov, Y.: Fano Varieties, Encyclopaedia of Mathematical Sciences, vol. 47. Springer, Berlin (1999)

    Google Scholar 

  25. Jahnke, P., Peternell, T., Radloff, I.: Threefolds with big and nef anticanonical bundles. I. Math. Ann. 333, 569–631 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Kollár, J.: Birational rigidity of Fano varieties and field extensions. Proc. Steklov Inst. Math. 264, 96–101 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Am. Math. Soc. 5, 533–703 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  29. Kuribayashi, A., Kimura, H.: Automorphism groups of compact Riemann surfaces of genus five. J. Algebra 134, 80–103 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Lazarsfeld, R.: Positivity in Algebraic Geometry II. Springer, Berlin (2004)

    MATH  Google Scholar 

  31. McKelvey, J.: The groups of birational transformations of algebraic curves of genus 5. Am. J. Math. 34, 115–146 (1912)

    MathSciNet  MATH  Google Scholar 

  32. Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. 116, 133–176 (1982)

    MathSciNet  MATH  Google Scholar 

  33. Mukai, S.: Finite groups of automorphisms of \(K3\) surfaces and the Mathieu group. Invent. Math. 94, 183–221 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Mukai, S., Umemura, H.: Minimal rational threefolds. Lect. Notes Math. 1016, 490–518 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Prokhorov, Y.: Fields of invariants of finite linear groups. Prog. Math. 282, 245–273 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Prokhorov, Y.: Simple finite subgroups of the Cremona group of rank 3. J. Algebr. Geom. 21, 563–600 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Prokhorov, Y., Reid, M.: On \({\mathbb{Q}}\)-Fano threefolds of Fano index 2. Adv. Stud. Pure Math. 70, 397–420 (2016)

    MATH  Google Scholar 

  38. Prokhorov, Y., Shramov, C.: Jordan property for Cremona groups. Am. J. Math. 138, 403–418 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Saint-Donat, B.: Projective models of \(K-3\) surfaces. Am. J. Math. 96, 602–639 (1974)

    MathSciNet  MATH  Google Scholar 

  40. Sakovics, D.: \(G\)-birational rigidity of the projective plane. Eur. J. Math. 5, 1090–1105 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Szurek, M., Wiśniewski, J.: Fano bundles of rank 2 on surfaces. Compos. Math. 76, 295–305 (1990)

    MathSciNet  MATH  Google Scholar 

  42. Takeuchi, K.: Some birational maps of Fano 3-folds. Compos. Math. 71, 265–283 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Todd, J.: A note on two special primals in four dimensions. Q. J. Math. 6, 129–136 (1935)

    MATH  Google Scholar 

  44. The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.7.4 (2014). http://www.gap-system.org

  45. Umezu, Y.: On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math. 4, 343–354 (1981)

    MathSciNet  MATH  Google Scholar 

  46. Wakeford, E.: Chords of twisted cubics. Proc. Lond. Math. Soc. 21, 98–113 (1922)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Igor Dolgachev, David Eklund, Takeru Fukuoka, Alexander Kuznetsov, Dmitrii Pasechnik, Yuri Prokhorov, and Dmitrijs Sakovics for useful discussions. Special thanks go to the referee for his careful reading of our paper. The first draft of this paper was written during Ivan Cheltsov’s stay at the Max Planck Institute for Mathematics in 2017. He would like to thank the institute for the excellent working condition. Both authors were supported by the Russian Academic Excellence Project “5-100”. Ivan Cheltsov was supported by the Royal Society grant No. IES/R1/180205. Constantin Shramov was supported by RFBR Grants 15-01-02164 and 15-01-02158, by Young Russian Mathematics award, and by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Shramov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Finite primitive groups

Appendix A: Finite primitive groups

In diagrams (A.1), (A.2), and (A.3) below, we present all the finite primitive subgroups of \({\mathrm {PGL}}_4({\mathbb {C}})\) together with some inclusions between them, including those that are necessary for the proof of Theorem 1.1. We emphasize that we will not need the whole classification for the proof, but only the information about the few smallest groups.

By \(\varvec{\mu }_n\) we denote the cyclic group of order n. The inclusions are depicted by arrows going from a smaller group to a larger one. We point out that there are indeed several additional inclusions (apart from those that are obtained merely by composing those inclusions that we list). For instance, the group \({\mathfrak {A}}_4\times {\mathfrak {A}}_4\) from diagram (A.1) and the group \({\mathfrak {A}}_6\) from diagram (A.3) are both subgroups of \(\varvec{\mu }_2^4\rtimes {\mathfrak {A}}_6\) from diagram (A.2).

In diagram (A.1), we list all finite primitive subgroups of \({\mathrm {PGL}}_4({\mathbb {C}})\) that leave invariant a quadric surface. The larger “connected component” of the diagram contains the groups \(1^\circ \)\(12^\circ \) described in [4, §§121, 122]; the smaller “connected component” contains the group (B) described in [4, §102] and the group (H) described in [4, §119]. We denote by \(\widehat{G\times G}\) the group generated by \(G\times G\) and an involution that exchanges the factors of \(G\times G\). This group is isomorphic to \((G\times G)\rtimes \varvec{\mu }_2\). However, we reserve the notation \(({\mathfrak {A}}_4\times {\mathfrak {A}}_4)\rtimes \varvec{\mu }_2\) not for a group of the latter type, but for a different subgroup of \({\mathrm {PGL}}_4({\mathbb {C}})\) generated by \({\mathfrak {A}}_4\) and an element of order 2 that does not exchange the factors; this element can be thought of as a product of two elementary transpositions in the factors of \({\mathfrak {S}}_4\times {\mathfrak {S}}_4\supset {\mathfrak {A}}_4\times {\mathfrak {A}}_4\). We refer the reader to [4, §121] for details. The above group is contained as a subgroup of index two in two other primitive subgroups of \({\mathrm {PGL}}_4({\mathbb {C}})\) preserving a quadric surface so that in both cases an additional element of order 2 exchanges the factors of \({\mathfrak {A}}_4\times {\mathfrak {A}}_4\subset ({\mathfrak {A}}_4\times {\mathfrak {A}}_4)\rtimes \varvec{\mu }_2\), see [4, §122] for details. We denote these two groups by \(\widehat{({\mathfrak {A}}_4\times {\mathfrak {A}}_4)\rtimes \varvec{\mu }_2^{(1)}}\) and \(\widehat{({\mathfrak {A}}_4\times {\mathfrak {A}}_4)\rtimes \varvec{\mu }_2^{(2)}}\).

(A.1)

In diagram (A.2), we list all finite primitive subgroups of \({\mathrm {PGL}}_4({\mathbb {C}})\) that contain a subgroup isomorphic to \(\varvec{\mu }_2^4\) except for those that leave invariant a quadric surface. These are the groups \(13^\circ \)\(21^\circ \) described in [4, §124]. We denote by \(\mathrm {D}_{10}\) the dihedral group of order 10. By F.G we mean a non-split extension of a group G by a group F.

(A.2)

Finally, in diagram (A.3), we list the remaining finite primitive subgroups of \({\mathrm {PGL}}_4({\mathbb {C}})\). These are the groups (A), (C), (D), (E), and (F) described in [4, §102], and the groups (G) and (K) described in [4, §119].

(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheltsov, I., Shramov, C. Finite collineation groups and birational rigidity. Sel. Math. New Ser. 25, 71 (2019). https://doi.org/10.1007/s00029-019-0516-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0516-5

Mathematics Subject Classification

Navigation