Skip to main content
Log in

A Fourier transform for the quantum Toda lattice

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We answer a question of V. Drinfeld by constructing an ‘algebraic Fourier transform’ for the quantum Toda lattice of a complex reductive algebraic group G, which extends the classical ‘algebraic Fourier transform’ for its subalgebra \(D(T)^W\) of Weyl group invariant differential operators on a maximal torus. The proof is contained in Sect. 2 and relies on a result of Bezrukavnikov–Finkelberg realizing the quantum Toda lattice as the equivariant homology of the dual affine Grassmannian; the Fourier transform boils down to nothing more than the duality between homology and cohomology. In Sect. 3, we compare our result with a related result of V. Ginzburg, and explain the apparent discrepancy by showing that W-equivariant quasicoherent sheaves on \({{\mathrm{\mathfrak {t}}}}^*\) descend to \({{\mathrm{\mathfrak {t}}}}^*//W\) if they descend to \({{\mathrm{\mathfrak {t}}}}^*/\langle s_i\rangle \) for every simple reflection \(s_i\) of W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezrukavnikov, R., Finkelberg, M.: Equivariant satake category and Kostant–Whittaker reduction. Mosc. Math. J. 8(1), 39–72 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bezrukavnikov, R., Mirković, I.: Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution. Ann. Math. 178(2), 835–919 (2013). With an appendix by Eric Sommers

    Article  MathSciNet  Google Scholar 

  3. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77, 778–782 (1955)

    Article  MathSciNet  Google Scholar 

  4. Demazure, M., Gabriel, P.: Groupes algebriques. Tome I: Géométrie algebrique, généralités, groupes commutatifs. Masson & Cie, Editeur, Paris; North-Holland Publishing Co., Amsterdam (1970)

  5. Ginzburg, V.: Nil Hecke Algebras and Whittaker D-Modules. arXiv:1706.06751 (2017)

  6. Ginzburg, V.: Perverse sheaves on a Loop group and Langlands’ duality. arXiv:alg-geom/9511007 (1995)

  7. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)

    Article  MathSciNet  Google Scholar 

  8. James, E.: Humphreys, Reflection Groups and Coxeter Groups. Volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  9. Kostant, B.: Quantization and representation theory, in representation theory of Lie groups. Lond. Math. Soc. Lect. Note Ser. 34, 287–316 (1979)

    Google Scholar 

  10. Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  11. Lusztig, G.: Singularities, character formulas, and a q-analogue for weight multiplicities. Analyse et topologie sur les espaces singuliers, Astérisque 101(102), 208–229 (1982)

    Google Scholar 

  12. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gus Lonergan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lonergan, G. A Fourier transform for the quantum Toda lattice. Sel. Math. New Ser. 24, 4577–4615 (2018). https://doi.org/10.1007/s00029-018-0419-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0419-x

Mathematics Subject Classification

Navigation