Skip to main content
Log in

The Schwartz space of a smooth semi-algebraic stack

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

A Correction to this article was published on 03 October 2018

This article has been updated

Abstract

Schwartz functions, or measures, are defined on any smooth semi-algebraic (“Nash”) manifold, and are known to form a cosheaf for the semi-algebraic restricted topology. We extend this definition to smooth semi-algebraic stacks, which are defined as geometric stacks in the category of Nash manifolds. Moreover, when those are obtained from algebraic quotient stacks of the form X/G, with X a smooth affine variety and G a reductive group defined over a number field k, we define, whenever possible, an “evaluation map” at each semisimple k-point of the stack, without using truncation methods. This corresponds to a regularization of the sum of those orbital integrals whose semisimple part corresponds to the chosen k-point. These evaluation maps produce, in principle, a distribution which generalizes the Arthur–Selberg trace formula and Jacquet’s relative trace formula, although the former, and many instances of the latter, cannot actually be defined by the purely geometric methods of this paper. In any case, the stack-theoretic point of view provides an explanation for the pure inner forms that appear in many versions of the Langlands, and relative Langlands, conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 October 2018

    The purpose of this note is to fix two gaps in the construction of Schwartz spaces of semi-algebraic stacks in [4], and to strengthen some statements, replacing quasi-isomorphisms by homotopy equivalences.

References

  1. Aizenbud, A., Gourevitch, D.: Schwartz functions on Nash manifolds. Int. Math. Res. Not. (5), 155 (2008). doi:10.1093/imrn/rnm155

  2. Aizenbud, A., Gourevitch, D.: The de-Rham theorem and Shapiro lemma for Schwartz function on Nash manifolds. Isr. J. Math. 177, 155–188 (2010). doi:10.1007/s11856-010-0042-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Aizenbud, A., Gourevitch, D.: Smooth transfer of Kloosterman integrals (the Archimedean case). Am. J. Math. 135(1), 143–182 (2013). doi:10.1353/ajm.2013.0000

    Article  MathSciNet  MATH  Google Scholar 

  4. Alper, J.: On the local quotient structure of Artin stacks. J. Pure Appl. Algebra 214(9), 1576–1591 (2010). doi:10.1016/j.jpaa.2009.11.016

    Article  MathSciNet  MATH  Google Scholar 

  5. Arthur, J.: A trace formula for reductive groups. II. Applications of a truncation operator. Compos. Math. 40(1):87–121 (1980). http://www.numdam.org/item?id=CM_1980__40_1_87_0

  6. Arthur, J.: The invariant trace formula. I. Local theory. J. Am. Math. Soc. 1(2), 323–383 (1988). doi:10.2307/1990920

    Article  MathSciNet  MATH  Google Scholar 

  7. Arthur, J.: The invariant trace formula. II. Global theory. J. Am. Math. Soc. 1(3), 501–554 (1988). doi:10.2307/1990948

    Article  MathSciNet  MATH  Google Scholar 

  8. Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S.: Smooth Compactifications of Locally Symmetric Varieties, 2nd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge. With the collaboration of Peter Scholze (2010). doi:10.1017/CBO9780511674693

  9. Atobe, H.: The local theta correspondence and the local Gan–Gross–Prasad conjecture for the symplectic-metaplectic case. Preprint. arXiv:1502.03528v2

  10. Baruch, E.M.: A proof of Kirillov’s conjecture. Ann. Math. 158(1), 207–252 (2003). doi:10.4007/annals.2003.158.207

    Article  MathSciNet  MATH  Google Scholar 

  11. Behrend, K., Xu, P.: Differentiable stacks and gerbes. J. Symplectic Geom. 9(3), 285–341 (2011). http://projecteuclid.org/euclid.jsg/1310388899

    Article  MathSciNet  Google Scholar 

  12. Bernstein, J.: Stacks in representation theory. What is a continuous representation of an algebraic group? Preprint. arXiv:1410.0435

  13. Bernstein, J., Krötz, B.: Smooth Fréchet globalizations of Harish–Chandra modules. Isr. J. Math. 199(1), 45–111 (2014). doi:10.1007/s11856-013-0056-1

    Article  MATH  Google Scholar 

  14. Bernstein, J.N.: \(P\)-invariant distributions on \({\rm GL}(N)\) and the classification of unitary representations of \({\rm GL}(N)\) (non-Archimedean case). In: Lie group representations, II (College Park, Md., 1982/1983). Lecture Notes in Mathematics, vol. 1041, pp. 50–102 (1984). Springer, Berlin. doi:10.1007/BFb0073145

    Google Scholar 

  15. Beuzart-Plessis, R.: La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes unitaires. Mém. Soc. Math. Fr. (N.S.) 149 (2016)

  16. Borel, A., Ji, L.: Compactifications of locally symmetric spaces. J. Differ. Geom. 73(2), 263–317 (2006). http://projecteuclid.org/euclid.jdg/1146169912

    Article  MathSciNet  Google Scholar 

  17. Bouthier, A., Châu Ngô, B., Sakellaridis, Y.: On the formal arc space of a reductive monoid. Am. J. Math. 138(1), 81–108 (2016). doi:10.1353/ajm.2016.0004

    Article  MathSciNet  MATH  Google Scholar 

  18. Bühler, T.: Exact categories. Expo. Math. 28(1), 1–69 (2010). doi:10.1016/j.exmath.2009.04.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Deligne, P.: Cohomologie à supports propres. In: Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics, vol. 305, pp. 252–480 (1973). Springer, Berlin. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat

  20. Denef, J.: \(p\)-Adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math. 369, 154–166 (1986). doi:10.1515/crll.1986.369.154

    Article  MathSciNet  MATH  Google Scholar 

  21. du Cloux, F.: Sur les représentations différentiables des groupes de Lie algébriques. Ann. Sci. École Norm. Sup. 24(3), 257–318 (1991). http://www.numdam.org/item?id=ASENS_1991_4_24_3_257_0

    Article  MathSciNet  Google Scholar 

  22. Frerick, L., Sieg, D.: Exact categories in functional analysis. Preprint (2010). http://www.math.uni-trier.de/abteilung/analysis/HomAlg.pdf

  23. Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical \(L\) values, and restriction problems in the representation theory of classical groups. Astérisque (346), 1–109 (2012). Sur les conjectures de Gross et Prasad. I

  24. Gan, W.T., Ichino, A.: The Gross–Prasad conjecture and local theta correspondence. Invent. Math. 1–95 (2016). doi:10.1007/s00222-016-0662-8. ISSN:1432–1297

    Article  MathSciNet  Google Scholar 

  25. Gross, B.H., Prasad, D.: On the decomposition of a representation of \({\rm SO}_n\) when restricted to \({\rm SO}_{n-1}\). Can. J. Math. 44(5), 974–1002 (1992). doi:10.4153/CJM-1992-060-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Ichino, A., Yamana, S.: Periods of automorphic forms: the case of \((\text{ GL }_{n+1}\times \text{ GL }_n,\text{ GL }_n)\). Compos. Math. 151(4), 665–712 (2015). doi:10.1112/S0010437X14007362

    Article  MathSciNet  MATH  Google Scholar 

  27. Jacquet, H.: Sur un résultat de Waldspurger. Ann. Sci. École Norm. Sup. (4)19(2):185–229 (1986). http://www.numdam.org/item?id=ASENS_1986_4_19_2_185_0

    Article  MathSciNet  Google Scholar 

  28. Jacquet, H., Lapid, E., Rogawski, J.: Periods of automorphic forms. J. Am. Math. Soc. 12(1), 173–240 (1999). doi:10.1090/S0894-0347-99-00279-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaletha, T.: Rigid inner forms of real and \(p\)-adic groups. Ann. Math. (2) 184(2), 559–632 (2016)

    Article  MathSciNet  Google Scholar 

  30. Khovanskii, A., Burda, Y.: Degree of rational mappings, and the theorems of Sturm and Tarski. J. Fixed Point Theory Appl. 3(1), 79–93 (2008). doi:10.1007/s11784-008-0065-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Kottwitz, R.E.: Rational conjugacy classes in reductive groups. Duke Math. J. 49(4), 785–806 (1982). http://projecteuclid.org/euclid.dmj/1077315531

    Article  MathSciNet  Google Scholar 

  32. Kudla, S.S., Rallis, S.: A regularized Siegel–Weil formula: the first term identity. Ann. Math. (2) 140(1), 1–80 (1994). doi:10.2307/2118540

    Article  MathSciNet  Google Scholar 

  33. Laumon, G., Moret-Bailly, L.: Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] (2000). Springer, Berlin

  34. Levy, J.: A truncated integral of the Poisson summation formula. Can. J. Math. 53(1), 122–160 (2001). doi:10.4153/CJM-2001-006-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Luna, D.: Slices étales. In: Sur les groupes algébriques, pp. 81–105. Bull. Soc. Math. France, Paris, Mémoire 33. Soc. Math. France, Paris (1973)

  36. Mœglin, C., Waldspurger, J.-L.: La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général. Astérisque (347), 197–216 (2012). Sur les conjectures de Gross et Prasad. II

  37. Noohi, B.: Foundations of topological stacks I. Preprint (2005). arXiv:math/0503247

  38. Sakellaridis, Y.: Beyond endoscopy for the relative trace formula II: global theory. Preprint, 100 pp. arXiv:1402.3524

  39. Sakellaridis, Y.: Beyond endoscopy for the relative trace formula I: local theory. In: Prasad, D., Rajan, C.S., Sankaranarayanan, A., Sengupta, J. (eds.) Automorphic Representations and L-Functions, pp. 521–590. American Mathematical Society, Providence (2013). Tata Institute of Fundamental Research, Mumbai

  40. Schneiders, J.-P.: Quasi-abelian categories and sheaves. Mém. Soc. Math. Fr. (N.S.) (76):vi+134 (1999)

  41. The Stacks Project Authors: Stacks Project (2016). http://stacks.math.columbia.edu

  42. Tancredi, A., Tognoli, A.: On the relative Nash approximation of analytic maps. Rev. Mat. Complut. 11(1), 185–200 (1998). doi:10.5209/rev_REMA.1998.v11.n1.17323

    Article  MathSciNet  MATH  Google Scholar 

  43. Taylor, J.L.: Homology and cohomology for topological algebras. Adv. Math. 9, 137–182 (1972)

    Article  MathSciNet  Google Scholar 

  44. Vogan, D.A., Jr.: The local Langlands conjecture. In: Representation Theory of Groups and Algebras, vol. 145 of Contemp. Math., pp. 305–379. American Mathematical Society, Providence (1993). http://dx.doi.org/10.1090/conm/145/1216197

  45. Waldspurger, J.-L.: La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes spéciaux orthogonaux. Astérisque (347), 103–165 (2012). Sur les conjectures de Gross et Prasad. II

  46. Zydor, M.: La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes linéaires. J. Inst. Math. Jussieu (to appear). arXiv:1310.1650

  47. Zydor, M.: La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes unitaires. Can. J. Math. 68(6), 1382–1435. doi:10.4153/CJM-2015-054-9

    Article  MathSciNet  Google Scholar 

  48. Zydor, M.: Les formules des traces relatives de Jacquet-Rallis grossières. Preprint. arXiv:1510.04301

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Sakellaridis.

Additional information

To Joseph Bernstein, in admiration and gratitude

This work was supported by NSF grants DMS-1101471 and DMS-1502270.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakellaridis, Y. The Schwartz space of a smooth semi-algebraic stack. Sel. Math. New Ser. 22, 2401–2490 (2016). https://doi.org/10.1007/s00029-016-0285-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0285-3

Keywords

Mathematics Subject Classification

Navigation