Skip to main content
Log in

Quantum cluster characters of Hall algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The aim of the present paper is to introduce a generalized quantum cluster character, which assigns to each object \(V\) of a finitary Abelian category \({\mathcal {C}}\) over a finite field \({\mathbb {F}}_q\) and any sequence \(\mathbf {i}\) of simple objects in \({\mathcal {C}}\) the element \(X_{V,\mathbf {i}}\) of the corresponding algebra \(P_{{\mathcal {C}},\mathbf {i}}\) of \(q\)-polynomials. We prove that if \({\mathcal {C}}\) was hereditary, then the assignments \(V\mapsto X_{V,\mathbf {i}}\) define algebra homomorphisms from the (dual) Hall–Ringel algebra of \({\mathcal {C}}\) to the \(P_{{\mathcal {C}},\mathbf {i}}\), which generalize the well-known Feigin homomorphisms from the upper half of a quantum group to \(q\)-polynomial algebras. If \({\mathcal {C}}\) is the representation category of an acyclic valued quiver \((Q,\mathbf {d})\) and \(\mathbf {i}=(\mathbf {i}_0,\mathbf {i}_0)\), where \(\mathbf {i}_0\) is a repetition-free source-adapted sequence, then we prove that the \(\mathbf {i}\)-character \(X_{V,\mathbf {i}}\) equals the quantum cluster character \(X_V\) introduced earlier by the second author in Rupel (Int Math Res Not 14:3207–3236, 2011; Quantum cluster characters of valued quivers, arXiv:1109.6694). Using this identification, we deduce a quantum cluster structure on the quantum unipotent cell corresponding to the square of a Coxeter element. As a corollary, we prove a conjecture from the joint paper Berenstein and Zelevinsky (Adv Math 195(2):405–455, 2005) of the first author with A. Zelevinsky for such quantum unipotent cells. As a by-product, we construct the quantum twist and prove that it preserves the triangular basis introduced by A. Zelevinsky and the first author in Berenstein and Zelevinsky (Int Math Res Not. doi:10.1093/imrn/rns268, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berenstein, A.: Group-Like Elements in Quantum Groups and Feigin’s Conjecture. arXiv:q-alg/9605016

  2. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: upper and lower bounds. Duke Math. J. 126(1), 1–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72, 128–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases, and totally positive varieties. Invent. Math. 143, 77–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berenstein, A., Zelevinsky, A.: Triangular bases in quantum cluster algebras. Int. Math. Res. Not. 2014(6), 1651–1688 (2014). doi:10.1093/imrn/rns268

  7. Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81, 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caldero, P., Keller, B.: From triangulated categories to cluster algebras. II. Ann. Sci. École Norm. Sup. (4) 39(6), 983–1009 (2006)

  9. Caldero, P., Reineke, M.: Quiver Grassmannian in the acyclic case. J. Pure Appl. Algebra 212(11), 2369–2380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Xiao, J.: Exceptional sequences in Hall algebras and quantum groups. Compos. Math. 117, 161–187 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc. 173, 1–57 (1976)

  12. Efimov, A.: Quantum Cluster Variables Via Vanishing Cycles. arXiv:1112.3601

  13. Fei, J.: Counting using Hall algebras I. Quivers. J. Algebra 372, 542559 (2012)

    Google Scholar 

  14. Geiss, C., Leclerc, B., Schröer, J.: Generic bases for cluster algebras and the chamber ansatz. J. Am. Math. Soc. 25(1), 21–76 (2012)

  15. Geiss, C., Leclerc, B., Schröer, J.: Cluster Structures on Quantum Coordinate Rings. arXiv:1104.0531

  16. Green, J.: Hall algebras, hereditary algebras, and quantum groups. Invent. Math. 120, 361–377 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hubery, A.: Ringel-Hall Algebras, Lecture Notes. http://www1.maths.leeds.ac.uk/~ahubery/RHAlgs

  18. Iohara, K., Malikov, F.: Rings of skew polynomials and Gelfand–Kirillov conjecture for quantum groups. Commun. Math. Phys. 164, 217–238 (1994)

  19. Joseph, A.: Sur une conjecture de Feigin. C. R. Acad. Sci. Paris S.I Math. 320(12), 1441–1444 (1995)

  20. Kimura, Y.: Quantum unipotent subgroup and dual canonical basis. Kyoto J. Math. 52(2), 277–331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qin, F.: Quantum cluster variables via Serre polynomials. J. Reine Angew. Math. 668, 149–190 (2012). doi:10.1515/CRELLE.2011.129

    MathSciNet  MATH  Google Scholar 

  22. Lusztig, G.: Problems on Canonical Bases. In: Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods, pp. 169–176. University Park, PA (1991), Proc. Sympos. Pure Math., 56, Part 2, AMS, Providence, RI (1994)

  23. Reineke, M.: Counting rational points of quiver moduli. Int. Math. Res. Not. 2006 (2006). doi:10.1155/IMRN/2006/70456

  24. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)

  25. Ringel, C.M.: Hall Algebras Revisited. Quantum Deformations of Algebras and their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), pp. 171–176, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan (1993)

  26. Ringel, C.M.: Green’s Theorem on Hall Algebras. (English summary) Representation Theory of Algebras and Related Topics (Mexico City, 1994), pp. 185–245, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI (1996)

  27. Rupel, D.: On a quantum analog of the Caldero–Chapoton formula. Int. Math. Res. Not. 14, 3207–3236 (2011)

  28. Rupel, D.: Quantum Cluster Characters of Valued Quivers. arXiv:1109.6694

  29. Rupel, D.: Proof of the Kontsevich Non-commutative Cluster Positivity Conjecture. arXiv:1201.3426

  30. Schiffmann, O.: Lectures on Hall Algebras. arXiv:math/0611617v1

Download references

Acknowledgments

We are grateful to Christof Geiss, Jacob Greenstein, and Andrei Zelevinsky (who sadly passed away on April 10, 2013) for stimulating discussions. An important part of this work was done during the authors’ visit to the MSRI in the framework of the “Cluster algebras” program and they thank the Institute and the organizers for their hospitality and support. The first author benefited from the hospitality of Institut des Hautes Études Scientiques and Max-Planck-Institut für Mathematik, which he gratefully acknowledges. The authors are immensely grateful to Gleb Koshevoy for stimulating discussions on the final stage of work on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Berenstein.

Additional information

To the memory of Andrei Zelevinsky.

A. Berenstein was supported in part by the NSF grant DMS-1101507.

Appendix: Twisted bialgebras in braided monoidal categories

Appendix: Twisted bialgebras in braided monoidal categories

Let \(\Bbbk \) be a field and \(\varGamma \) an additive monoid. For any unitary bicharacter \(\chi :\varGamma \times \varGamma \rightarrow \Bbbk ^\times \), let \({\mathcal {C}}_\chi \) be the tensor category of \(\varGamma \)-graded vector spaces \(V=\bigoplus _{\gamma \in \varGamma } V(\gamma )\) such that each component \(V(\gamma )\) is finite dimensional. Clearly, this category is braided via \(\varPsi _{U,V}:U\otimes V\rightarrow V\otimes U\) given by

$$\begin{aligned} \varPsi _{U,V}\left( u_\gamma \otimes v_{\gamma '}\right) =\chi (\gamma ,\gamma ') \cdot v_{\gamma '}\otimes u_\gamma \end{aligned}$$

for any \(u_\gamma \in U(\gamma ), v_{\gamma '}\in V(\gamma ')\).

Let \({\mathcal {U}}=\bigoplus _{\gamma \in \varGamma }{\mathcal {U}}(\gamma )\) be a bialgebra in \({\mathcal {C}}_\chi \). Denote by \(\hat{\mathcal {U}}\) the completion of \({\mathcal {U}}\) with respect to the grading, that is, the space of all formal series \(\tilde{u}=\sum _{\gamma \in \varGamma } u_\gamma \), where \(u_\gamma \in {\mathcal {U}}(\gamma )\). For each such \(\tilde{u}\) denote by \(\mathrm{Supp}(\tilde{u})\) the submonoid of \(\varGamma \) generated by \(\{\gamma :u_\gamma \ne 0\}\).

From now on, we assume that for any \(\gamma \in \varGamma \) the set

$$\begin{aligned} A_\gamma =\left\{ (\gamma ',\gamma ''):\gamma '+\gamma ''=\gamma \right\} \end{aligned}$$

of two-part partitions of \(\gamma \) is finite. It is easy to see that, under this assumption, \(\hat{\mathcal {U}}\) has a well-defined multiplication. The coproduct on \({\mathcal {U}}\) extends to \(\hat{\varDelta }:\hat{\mathcal {U}}\rightarrow {\mathcal {U}}\hat{{\bigotimes }} {\mathcal {U}}\) so that \(\hat{\mathcal {U}}\) becomes a complete bialgebra. The following fact is obvious.

Lemma 9.1

Let \(E=\sum _{\gamma \in \varGamma } E^{(\gamma )}\) be a formal series, where each \( E^{(\gamma )}\in {\mathcal {U}}(\gamma )\). Then, \(E\) is grouplike in \(\hat{{\mathcal {U}}}\) (i.e., \(\hat{\varDelta }(E)=E\otimes E\)) if and only if

$$\begin{aligned} \varDelta (E^{(\gamma )})=\sum _{(\gamma ',\gamma '')\in A_\gamma } E^{(\gamma ')}\otimes E^{(\gamma '')} \end{aligned}$$

for each \(\gamma \in \varGamma \).

As a corollary of Lemma 9.1, we have the following well-known result.

Lemma 9.2

If \(x\in {\mathcal {U}}\) is primitive, i.e., \(\varDelta (x)=x\otimes 1+1\otimes x\) and \(\varPsi _{{\mathcal {U}},{\mathcal {U}}}(x\otimes x)=qx\otimes x\) for some non-root of unity \(q\in \Bbbk ^\times \), then the braided exponential

$$\begin{aligned} \mathrm{exp}_q(x)=\sum _{k=0}^\infty \frac{1}{(k)_q!} x^k \end{aligned}$$

of \(x\) is grouplike in \(\hat{{\mathcal {U}}}\), where \((k)_q!=(1)_q\ldots (k)_q\) and \((\ell )_q=\frac{q^\ell -1}{q-1}\).

However, the product of grouplike elements is not always grouplike. We can sometimes restore the grouplike property of a product by twisting the factors with elements of an appropriate non-commutative algebra \({\mathcal {P}}\) in \({\mathcal {C}}_\chi \). This, contained in Proposition 9.4, is the main idea behind the forthcoming theorem.

Now we define the restricted dual algebra \({\mathcal {A}}\) of \({\mathcal {U}}\). As a vector space, \({\mathcal {A}}\) is the set of all \(\Bbbk \)-linear forms \(x:{\mathcal {U}}\rightarrow \Bbbk \) such that \(x\) vanishes on \({\mathcal {U}}(\gamma )\) for all but finitely many \(\gamma \in \varGamma \). In other words, \({\mathcal {A}}\cong \bigoplus _{\gamma \in \varGamma } {\mathcal {A}}(\gamma )\) where \({\mathcal {A}}(\gamma )={\mathrm{Hom }}_\Bbbk ({\mathcal {U}}(\gamma ),\Bbbk )\). Clearly, \({\mathcal {A}}\) is an algebra in \({\mathcal {C}}_\chi \) with the product (resp. unit) adjoint of the coproduct \(\varDelta \) (resp. counit) on \({\mathcal {U}}\).

Let \(\mathbf{E}=(E_1,\ldots ,E_m)\) be a family of grouplike elements

$$\begin{aligned} E_k=\sum _{\gamma \in \varGamma } E_k^{(\gamma )} \end{aligned}$$

in \(\hat{\mathcal {U}}\). We say that \(\mathbf{E}\) is \({\mathcal {P}}\)-adapted if for each \(k=1,\ldots ,m\) there exists a homomorphism \(\tau _k\) from the monoid \(\mathrm{Supp}(E_k)\) to the multiplicative monoid of \({\mathcal {P}}\) such that

$$\begin{aligned} \tau _\ell (\gamma _\ell )\tau _k(\gamma _k)=\chi (\gamma _k,\gamma _\ell )\cdot \tau _k(\gamma _k) \tau _\ell (\gamma _\ell ) \end{aligned}$$
(9.1)

for all \(k<\ell \) and \(\gamma _k\in \mathrm{Supp}(E_k)\). For every \({\mathcal {P}}\)-adapted family \(\mathbf{E}\), we define a map \(\varPsi _\mathbf{E}:{\mathcal {A}} \rightarrow {\mathcal {P}}\) by the formula

$$\begin{aligned} \varPsi _\mathbf{E}(x)=\sum _{\gamma _1\in \mathrm{Supp}(E_1),\ldots ,\gamma _m\in \mathrm{Supp}(E_m)}x\big (E_1^{(\gamma _1)}\ldots E_m^{(\gamma _m)}\big )\tau _1(\gamma _1)\ldots \tau _m(\gamma _m), \end{aligned}$$
(9.2)

where we denote by \((x,u)\mapsto x(u)\) the natural non-degenerate evaluation pairing \({\mathcal {A}}\times {\mathcal {U}}\rightarrow \Bbbk \). Note that the sum in (9.2) is always finite because \(x\) vanishes on all but finitely many homogeneous components of \({\mathcal {U}}\).

Theorem 9.3

For any \({\mathcal {P}}\)-adapted family \(\mathbf{E}\) of grouplike elements, the map \(\varPsi _\mathbf{E}:{\mathcal {A}} \rightarrow {\mathcal {P}}\) defined by (9.2) is a homomorphism of \(\varGamma \)-graded algebras.

Proof

For any \(\Bbbk \)-algebra \({\mathcal {P}}\) denote \({\mathcal {U}}_{\mathcal {P}}:={\mathcal {U}} \bigotimes {\mathcal {P}}\) and view it as an algebra with the standard (NOT braided!) algebra structure. We will often abbreviate \(u\cdot t:=u\otimes t\) for \(u\in {\mathcal {U}}, t\in {\mathcal {P}}\).

Denote by \(\hat{\mathcal {U}}_{\mathcal {P}}\) the completion of \({\mathcal {U}}_{\mathcal {P}}\), i.e., \(\hat{\mathcal {U}}_{\mathcal {P}}=\hat{\mathcal {U}} \bigotimes {\mathcal {P}}\) is the space of formal series of the form \(\sum _{\gamma \in \varGamma } u_\gamma \cdot t_\gamma \), where \(u_\gamma \in {\mathcal {U}}(\gamma )\) and \(t_\gamma \in {\mathcal {P}}\). Consider the tensor square \({\mathcal {V}}_{\mathcal {P}}={\mathcal {U}}_{\mathcal {P}}\bigotimes _{\mathcal {P}}{\mathcal {U}}_{\mathcal {P}}\) where the left factor is regarded as a right \({\mathcal {P}}\)-module and the right factor as a left \({\mathcal {P}}\)-module. Note that \({\mathcal {V}}_{\mathcal {P}}\) is a \({\mathcal {P}}\)-bimodule in which we can write \(t(u\otimes v)=(tu)\otimes v=u\otimes (tv)=(u\otimes v)t\) for any \(u,v\in {\mathcal {U}}, t\in {\mathcal {P}}\). Under the standard identification

$$\begin{aligned} {\mathcal {V}}_{\mathcal {P}}\cong ({\mathcal {U}} \bigotimes {\mathcal {U}})\bigotimes {\mathcal {P}}, \end{aligned}$$

this bimodule \({\mathcal {V}}_{\mathcal {P}}\) becomes an algebra.

We will also need the completed tensor square \(\hat{\mathcal {V}}_{\mathcal {P}}={\mathcal {U}}_{\mathcal {P}}{\hat{\bigotimes }_{\mathcal {P}}} {\mathcal {U}}_{\mathcal {P}}\). There is a natural morphism of \({\mathcal {P}}\)-bimodules

$$\begin{aligned} \hat{\varDelta }_{\mathcal {P}}:\hat{\mathcal {U}}_{\mathcal {P}}\rightarrow \hat{\mathcal {V}}_{\mathcal {P}}\end{aligned}$$

which is the \({\mathcal {P}}\)-linear extension of the coproduct \(\hat{\varDelta }\) on \(\hat{\mathcal {U}}\). Clearly, \(\hat{\varDelta }_{\mathcal {P}}\) is an algebra homomorphism.

For each \({\mathcal {P}}\)-adapted family \(\mathbf{E}\) define an element \(\tilde{E} \in \hat{\mathcal {U}}_{\mathcal {P}}\) as follows:

$$\begin{aligned} \tilde{E}=\tilde{E}_1\ldots \tilde{E}_m, \end{aligned}$$

where

$$\begin{aligned} \tilde{E}_k=\sum _{\gamma \in \mathrm{Supp}(E_k)} E_k^{(\gamma )} \cdot \tau _k(\gamma ). \end{aligned}$$

Proposition 9.4

For any \({\mathcal {P}}\)-adapted family of grouplike elements \(\mathbf{E}\), the element \(\tilde{E}\in \hat{\mathcal {U}}_{\mathcal {P}}\) is grouplike, i.e.,

$$\begin{aligned} \varDelta _{\mathcal {P}}(\tilde{E})=\tilde{E}\otimes \tilde{E}. \end{aligned}$$

Proof

We need the following fact.

Lemma 9.5

In the assumptions of Proposition 9.4, one has:

  1. (a)

    each \(\tilde{E}_k\) is a grouplike element in \(\hat{\mathcal {U}}_{\mathcal {P}}\).

  2. (b)

    \((1\otimes \tilde{E}_k)(\tilde{E}_\ell \otimes 1)=(\tilde{E}_\ell \otimes 1) (1 \otimes \tilde{E|}_k)\) for any \(1\le k<l\le m\).

Proof

To prove (a), note that by Lemma 9.1 we have

$$\begin{aligned} \hat{\varDelta }_{\mathcal {P}}(\tilde{E}_k)&= \sum _{\gamma \in \mathrm{Supp}(E_k)}\varDelta (E_k^{(\gamma )})\cdot \tau _k(\gamma )=\sum _{\gamma ',\gamma ''\in \mathrm{Supp}(E_k)}E_k^{(\gamma ')}\otimes E_k^{(\gamma '')}\tau _k(\gamma '+\gamma '') \\&= \sum _{\gamma ',\gamma ''\in \mathrm{Supp}(E_k)}E_k^{(\gamma ')}\cdot \tau _k(\gamma ')\otimes E_k^{(\gamma ')}\tau _k(\gamma '')=\tilde{E}_k\otimes \tilde{E}_k, \end{aligned}$$

where we have used the multiplicativity of \(\tau _k\): \(\tau _k(\gamma '+\gamma '')=\tau _k(\gamma ')\tau _k(\gamma '')\).

To prove (b), abbreviate \(\tilde{E}_k^{(\gamma )}:=E_k^{(\gamma )}\cdot \tau _k(\gamma )\) for \(k=1,\ldots ,m, \gamma \in \mathrm{Supp}(E_k)\). Then for \(k<\ell \) and \(\gamma _k\in \mathrm{Supp}(E_k), \gamma _\ell \in \mathrm{Supp}(E_\ell )\) we deduce the following commutation relation using (9.1):

$$\begin{aligned} \left( 1\otimes \tilde{E}_k^{\left( \gamma _k\right) }\right) \left( \tilde{E}_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right)&= \left( 1\otimes E_k^{\left( \gamma _k\right) }\right) \left( E_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right) \cdot \tau _k\left( \gamma _k\right) \tau _\ell \left( \gamma _\ell \right) \\&= \left( E_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right) \left( 1\otimes E_k^{\left( \gamma _k\right) }\right) \cdot \chi \left( \gamma _k,\gamma _\ell \right) \tau _k\left( \gamma _k\right) \tau _\ell \left( \gamma _\ell \right) \\&= \left( E_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right) \left( 1\otimes E_k^{\left( \gamma _k\right) }\right) \cdot \tau _\ell \left( \gamma _\ell \right) \tau _k\left( \gamma _k\right) \\&= \left( \tilde{E}_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right) \left( 1\otimes \tilde{E}_k^{\left( \gamma _k\right) }\right) . \end{aligned}$$

Since \(\tilde{E}_k=\sum _{\gamma _k\in \mathrm{Supp}(E_k)}\tilde{E}_k^{(\gamma _k)} \) and \(\tilde{E}_\ell =\sum _{\gamma _\ell \in \mathrm{Supp}(E_\ell )} \tilde{E}_\ell ^{(\gamma _\ell )}\), we obtain the desired result:

$$\begin{aligned} \left( 1\otimes \tilde{E}_k\right) \left( \tilde{E}_\ell \otimes 1\right)&= \sum \limits _{\gamma _k\in \mathrm{Supp}\left( E_k\right) ,\gamma _\ell \in \mathrm{Supp}\left( E_\ell \right) }\left( 1\otimes \tilde{E}_k^{\left( \gamma _k\right) }\right) \left( \tilde{E}_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right) \\&= \sum \limits _{\gamma _k\in \mathrm{Supp}\left( E_k\right) ,\gamma _\ell \in \mathrm{Supp}\left( E_\ell \right) }\left( \tilde{E}_\ell ^{\left( \gamma _\ell \right) }\otimes 1\right) \left( 1\otimes \tilde{E}_k^{\left( \gamma _k\right) }\right) \\&= \left( \tilde{E}_\ell \otimes 1\right) \left( 1 \otimes \tilde{E}_k\right) . \end{aligned}$$

Lemma 9.5 is proved. \(\square \)

Now we are ready to finish the proof of Proposition 9.4. Using Lemma 9.5 and the identities \(\tilde{u}\otimes \tilde{v}=(\tilde{u}\otimes 1)(1\otimes \tilde{v}), (\tilde{u}\otimes 1)(\tilde{v}\otimes 1)=\tilde{u}\tilde{v}\otimes 1\) and \((1\otimes \tilde{u})(1\otimes \tilde{v})=1\otimes \tilde{u}\tilde{v}\), for any \(\tilde{u},\tilde{v}\in \hat{\mathcal {U}}_{\mathcal {P}}\), we compute

$$\begin{aligned} \hat{\varDelta }_{\mathcal {P}}(\tilde{E})&= \hat{\varDelta }_{\mathcal {P}}(\tilde{E}_1\ldots \tilde{E}_m)=\hat{\varDelta }_{\mathcal {P}}(\tilde{E}_1)\ldots \hat{\varDelta }_{\mathcal {P}}(\tilde{E}_m)=(\tilde{E}_1\otimes \tilde{E}_1)\ldots (\tilde{E}_m\otimes \tilde{E}_m) \\&= (\tilde{E}_1\otimes 1)(1\otimes \tilde{E}_1)\ldots (\tilde{E}_m\otimes 1)(1\otimes \tilde{E}_m)\\&= \big ((\tilde{E}_1\otimes 1)\ldots (\tilde{E}_m\otimes 1)\big )\big ((1\otimes \tilde{E}_1)\ldots (1\otimes \tilde{E}_m)\big )\\&= (\tilde{E}\otimes 1)(1\otimes \tilde{E})=\tilde{E}\otimes \tilde{E}. \end{aligned}$$

Proposition 9.4 is proved. \(\square \)

Finally, we define the pairing \({\mathcal {A}}\times \hat{\mathcal {U}}_{\mathcal {P}}\rightarrow {\mathcal {P}}\) by:

$$\begin{aligned} x\left( \sum u_\gamma \cdot t_\gamma \right) =\sum x(u_\gamma )t_\gamma . \end{aligned}$$

Clearly, the pairing is well-defined because all but finitely many terms \(x(u_\gamma )\) are \(0\) for each \(u\in {\mathcal {A}}\). For every \({\mathcal {P}}\)-adapted family \(\mathbf{E}\), we see that the map \(\varPsi _\mathbf{E}:{\mathcal {A}} \rightarrow P\) defined in (9.2) is given by the formula \(\varPsi _\mathbf{E}(x):=x(\tilde{E})\).

The definition of the multiplication in \({\mathcal {A}}\) implies that \((xy)(\tilde{u})=(x\otimes y)(\hat{\varDelta }_{\mathcal {P}}(\tilde{u}))\) for all \(x,y\in {\mathcal {A}}\) and \(\tilde{u}\in \hat{\mathcal {U}}_{\mathcal {P}}\), where

$$\begin{aligned} (x\otimes y)\left( \tilde{u}_1\otimes \tilde{u}_2\right) :=x(\tilde{u}_1)y(\tilde{u}_2) \end{aligned}$$

for any \(\tilde{u}_1,\tilde{u}_2\in \hat{\mathcal {U}}_{\mathcal {P}}\). Thus, we have

$$\begin{aligned} \varPsi _\mathbf{E}(xy)&= (xy)(\tilde{E})=(x\otimes y)(\hat{\varDelta }_{\mathcal {P}}(\tilde{E}))=(x\otimes y)(\tilde{E}\otimes \tilde{E})\\&= x(\tilde{E})y(\tilde{E})=\varPsi _\mathbf{E}(x)\varPsi _\mathbf{E}(y), \end{aligned}$$

which finishes the proof of Theorem 9.3. \(\square \)

For each \(u\in \mathcal {U}\) define the linear operators \(x\mapsto u(x)\) and \(x\mapsto u^{op}(x)\) on \({\mathcal {A}}\) by:

$$\begin{aligned} u(x)(u')=x(u'u),~ u^{op}(x)(u')=x(uu') \end{aligned}$$

for all \(u'\in \mathcal {U}, x\in {\mathcal {A}}\).

Clearly, the operators \(x\mapsto u(x)\) and \(x\mapsto u^{op}(x)\) define, respectively, the left and the right \(\mathcal {U}\)-action on \({\mathcal {A}}\) and \(u(x),u^{op}(x)\in {\mathcal {A}}_{\gamma '-\gamma }\) for each homogeneous \(u\in \mathcal {U}_\gamma \) and \(x\in {\mathcal {A}}_{\gamma '}\).

Using this in the form \(x(u_1\ldots u_m)=(u_1\ldots u_m(x))(1)=u_m^{op}\ldots u_1^{op}(x)(1)\), we rewrite (9.2) for any homogeneous \(x\in {\mathcal {A}}_\gamma \) as:

$$\begin{aligned}&\varPsi _\mathbf{E}(x)=\sum E_1^{(\gamma _1)}\ldots E_m^{(\gamma _m)}(x)\cdot \tau _1(\gamma _1)\ldots \tau _m(\gamma _m), \end{aligned}$$
(9.3)
$$\begin{aligned}&\varPsi _\mathbf{E}(x)=\sum {E_m^{(\gamma _m)}}^{op}\ldots {E_1^{(\gamma _1)}}^{op}(x)\cdot \tau _1(\gamma _1)\ldots \tau _m(\gamma _m), \end{aligned}$$
(9.4)

where the summation is over all \((\gamma _1,\ldots ,\gamma _m)\in \mathrm{Supp}(E_1)\times \cdots \times \mathrm{Supp}(E_m)\) such that \(\gamma _1+\cdots +\gamma _m=\gamma \).

We finish with the following obvious, however, useful fact.

Lemma 9.6

Let \(E\in \mathcal {U}_\alpha \) be any homogeneous primitive element. Then for any \(x\in {\mathcal {A}}_\gamma \) and \(y\in {\mathcal {A}}\), one has

$$\begin{aligned} E(yx)=\chi (\gamma ,\alpha )\cdot E(y)x+ yE(x),~E^{op}(xy)=E^{op}(x)y+ \chi (\alpha ,\gamma )\cdot xE^{op}(y). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berenstein, A., Rupel, D. Quantum cluster characters of Hall algebras. Sel. Math. New Ser. 21, 1121–1176 (2015). https://doi.org/10.1007/s00029-014-0177-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0177-3

Mathematics Subject Classification

Navigation