Skip to main content
Log in

Nonlinear Schrödinger equation, differentiation by parts and modulation spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic nonlinear Schrödinger equation in the modulation space \(M_{p,q}^{s}({\mathbb {R}})\) where \(1\le q\le 2\), \(2\le p<\frac{10q'}{q'+6}\) and \(s\ge 0\). Moreover, for either \(1\le q\le \frac{3}{2}, s\ge 0\) and \(2\le p\le 3\) or \(\frac{3}{2}<q\le \frac{18}{11}, s>\frac{2}{3}-\frac{1}{q}\) and \(2\le p\le 3\) or \(\frac{18}{11}<q\le 2, s>\frac{2}{3}-\frac{1}{q}\) and \(2\le p<\frac{10q'}{q'+6}\) we show that the Cauchy problem is unconditionally wellposed in \(M_{p,q}^{s}({\mathbb R}).\) This improves Pattakos (J Fourier Anal Appl, 2018. https://doi.org/10.1007/s00041-018-09655-9), where the case \(p=2\) was considered and the differentiation-by-parts technique was introduced to a problem with continuous Fourier variable. Here, the same technique is used, but more delicate estimates are necessary for \(p\ne 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Babin, A. Ilyin and E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation. Comm. Pure Appl. Math. 64(5), 591–648 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bényi and K.A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces. Bulletin of the London Mathematical Society, 41(3):549–558, (2009), ISSN 0024-6093.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. arXiv:math/0503366.

  4. H. G. Feichtinger, Modulation spaces on locally compact Abelian groups. Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and applications, 2002, New Delhi Allied Publishers, India (2003), 99–140.

  5. A. Grünrock, Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. International Mathematics Research Notices, 2005(41):2525–2558, 2005, ISSN 1073-7928.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Guo, On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space. J. Fourier Anal. Appl. 23(1), 91–124 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Guo, S. Kwon and T. Oh, Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Comm. Math. Phys. , 322(1), 19–48 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. G.H. Hardy, E.M. Wright, An introduction to the theory of numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979, xvi+426pp.

  9. T. Kato, On nonlinear Schrödinger equations. II. \(H^{s}\)-solutions and unconditional well-posedness. J. Anal. Math. 67 (1995), 281–306.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Pattakos, NLS in the modulation space \(M_{2,q}({\mathbb{R}})\). J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/s00041-018-09655-9.

  11. Y. Tsutsumi, \(L^{2}\) solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac. 30 (1987), 115–125.

    MathSciNet  MATH  Google Scholar 

  12. A. Vargas and L. Vega, Global wellposedness for 1d nonlinear Schrödinger equation for data with an infinite \(L^{2}\) norm. J. Math. Pures Appl. 80, 10(2001), 1029–1044.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36–73.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Yoon, Normal Form Approach to Well-posedness of Nonlinear Dispersive Partial Differential Equations. Ph.D. thesis (2017), Korea Advanced Institute of Science and Technology.

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173. Dirk Hundertmark also thanks Alfried Krupp von Bohlen und Halbach Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peer Kunstmann or Nikolaos Pattakos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaichenets, L., Hundertmark, D., Kunstmann, P. et al. Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ. 19, 803–843 (2019). https://doi.org/10.1007/s00028-019-00501-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00501-z

Navigation