Skip to main content
Log in

Spectral analysis of a differential operator with an involution

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We use the method of similar operators to perform the asymptotic analysis of the spectrum of a differential operator with an involution. We show that such operators have compact resolvent, and that their large eigenvalues are determined by the values of (the Fourier coefficients) of their potential up to a summable sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskakov A., Didenko V.: Spectral analysis of differential operators with unbounded periodic coefficients. Differential Equations. 51, pp. 325–341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. G. Baskakov, Methods of abstract harmonic analysis in the theory of perturbations of linear operators, Sibirsk. Mat. Zh., 24 (1983), pp. 21–39, 191. English translation: Siberian Math. J. 24 (1983), no. 1, pp. 17–32.

  3. A. G. Baskakov, The Krylov-Bogolyubov substitution in the theory of perturbations of linear operators, Ukrain. Mat. Zh., 36 (1984), pp. 606–611. English translation: Ukrainian Math. J. 36 (1984), no. 5, 451–455.

  4. A. G. Baskakov, The method of similar operators and formulas for regularized traces, Izv. Vyssh. Uchebn. Zaved. Mat., (1984), pp. 3–12. English translation: Soviet Math. (Iz. VUZ) 28 (1984), no. 3, 1–13.

  5. A. G. Baskakov, The averaging method in the theory of perturbations of linear differential operators, Differentsial’nye Uravneniya, 21 (1985), pp. 555–562, 732. English translation: Differential Equations 21 (1985), no. 4, 357–362.

  6. A. G. Baskakov, Regularized trace formulas for powers of perturbed spectral operators, Izv. Vyssh. Uchebn. Zaved. Mat., (1985), pp. 68–71, 86. English translation: Soviet Math. (Iz. VUZ) 29 (1985), no. 8, 93–96.

  7. A. G. Baskakov, A theorem on splitting of an operator and some related problems in the analytic theory of perturbations, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), pp. 435–457, 638. English translation: Math. USSR-Izv. 28 (1987), no. 3, pp. 421–444.

  8. Baskakov A. G.: Garmonicheskii analiz lineinykh operatorov. Izdatel’stvo Voronezhskogo Universiteta, Voronezh (1987)

    Google Scholar 

  9. A. G. Baskakov, Spectral analysis of perturbed non-quasi-analytic and spectral operators, Izv. Ross. Akad. Nauk Ser. Mat., 58 (1994), pp. 3–32. English translation: Russian Acad. Sci. Izv. Math. 45 (1995), no. 1, pp. 1–31.

  10. A. G. Baskakov, Estimates for the elements of inverse matrices, and the spectral analysis of linear operators, Izv. Ross. Akad. Nauk Ser. Mat., 61 (1997), pp. 3–26. English translation: Izv. Math. 61 (1997), no. 6, pp. 1113–1135.

  11. A. G. Baskakov, Estimates for the Green’s function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations, Mat. Sb., 206 (2015), pp. 23–62. English translation: Sb. Math., 206 (2015), no. 8, pp. 1049–1086.

  12. A. G. Baskakov, A. V. Derbushev, and A. O. Shcherbakov, The method of similar operators in the spectral analysis of the nonselfadjoint Dirac operator with nonsmooth potential, Izv. Ross. Akad. Nauk Ser. Mat., 75 (2011), pp. 3–28. English translation: Izv. Math. 75 (2011), no. 3, 445–469.

  13. A. G. Baskakov and I. A. Krishtal, Spectral analysis of abstract parabolic operators in homogeneous function spaces, Mediterranean Journal of Mathematics, (2015). doi:10.1007/s00009-015-0633-0.

  14. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. 1. C*- and W*-algebras, symmetry groups, decomposition of states, Texts and Monographs in Physics, Springer-Verlag, New York, second ed., 1987.

  15. M. S. Burlutskaya and A. P. Khromov, The Fourier method in a mixed problem for a first-order partial differential equation with involution, Zh. Vychisl. Mat. Mat. Fiz., 51 (2011), pp. 2233–2246. English translation: Comput. Math. Math. Phys. 51 (2011), no. 12, 2102–2114.

  16. M. S. Burlutskaya and A. P. Khromov, Mixed problems for first-order hyperbolic equations with involution, Dokl. Akad. Nauk, 441 (2011), pp. 156–159. English translation: Dokl. Math. 84 (2011), no. 3, 783–786.

  17. M. S. Burlutskaya and A. P. Khromov, Functional-differential operators with involution and Dirac operators with periodic boundary conditions, Dokl. Akad. Nauk, 454 (2014), pp. 15–17. English translation: Dokl. Math. 89 (2014), no. 1, 8–10.

  18. M. S. Burlutskaya, V. P. Kurdyumov, and A. P. Khromov, Refined asymptotic formulas for the eigenvalues and eigenfunctions of the Dirac system, Dokl. Akad. Nauk, 443 (2012), pp. 414–417. English translation: Dokl. Math. 85 (2012), no. 2, 240–242.

  19. Djakov P., Mityagin B.: Equiconvergence of spectral decompositions of Hill-Schrödinger operators. J. Differential Equations, 255, pp. 3233–3283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

  21. K. O. Friedrichs, Lectures on advanced ordinary differential equations, Notes by P. Berg, W. Hirsch, P. Treuenfels, Gordon and Breach Science Publishers, New York, 1965.

  22. Kalman R. E., Bucy R. S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D. J. Basic Engrg. 83, pp. 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  23. A. P. Khromov, Equiconvergence theorems for integro-differential and integral operators, Mat. Sb. (N.S.), 114(156) (1981), pp. 378–405, 479.

  24. Mityagin B.: Spectral expansions of one-dimensional periodic Dirac operators, Dyn. Partial Differ. Equ., 1, pp. 125–191 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. V. A. Pliss, Nelokalnye problemy teorii kolebanii, Izdat. “Nauka”, Moscow, 1964.

  26. Pliss V. A.: Families of periodic solutions of systems of differential equations of second order without dissipation. Differencial’nye Uravnenija. 1, pp. 1428–1448 (1965)

    MathSciNet  MATH  Google Scholar 

  27. M. A. Sadybekov and A. M. Sarsenbi, Criterion for the basis property of the eigenfunction system of a multiple differentiation operator with an involution, Differ. Equ., 48 (2012), pp. 1112–1118. Translation of Differ. Uravn. 48 (2012), no. 8, 1126–1132.

  28. Turner R. E. L.: Perturbation of compact spectral operators. Comm. Pure Appl. Math. 18, pp. 519–541 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. N. B. Uskova, On the method of similar operators in Banach algebras, Izv. Vyssh. Uchebn. Zaved. Mat., (2005), pp. 79–85. English translation: Russian Math. (Iz. VUZ) 49 (2005), no. 3, pp. 75–81.

  30. V. S. Vladimirov, Equations of mathematical physics, “Mir”, Moscow, 1984. Translated from the Russian by Eugene Yankovsky [E. Yankovskiĭ].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya A. Krishtal.

Additional information

Anatoly G. Baskakov is supported in part by RFBR Grant 16-01-00197 and RSF Grant 14-21-00066 (Section 4). Ilya A. Krishtal is supported in part by NSF Grant DMS-1322127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, A.G., Krishtal, I.A. & Romanova, E.Y. Spectral analysis of a differential operator with an involution. J. Evol. Equ. 17, 669–684 (2017). https://doi.org/10.1007/s00028-016-0332-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0332-8

Mathematics Subject Classification

Keywords

Navigation