Skip to main content
Log in

Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove that the weak Riemannian metric induced by the fractional Sobolev norm H s on the diffeomorphism group of the circle is geodesically complete, provided that s > 3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams. Sobolev Spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, vol. 65.

  2. Bauer M., Bruveris M., Harms P., Michor P. W.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group. Ann. Global Anal. Geom., 44(1), 5–21 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Camassa R., Holm D.D.:An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71(11), 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Constantin A., Escher J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z., 233(1), 75–91 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantin A., Kolev B.:Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv., 78(4), 787–804 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin P., Lax P.D., Majda A.: simple one-dimensional model for the three-dimensional vorticity equation. Comm. Pure Appl. Math., 38(6), 715–724 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Dieudonné. Deux exemples singuliers d’équations différentielles. Acta Sci. Math. Szeged, 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars B):38–40, 1950.

  8. D. G. Ebin and J. E. Marsden. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. (2), 92:102–163, 1970.

  9. Escher J., Kolev B.: The Degasperis-Procesi equation as a non-metric Euler equation. Math. Z., 269(3-4), 1137–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Escher and B. Kolev. Right-invariant Sobolev metrics H s on the diffeomorphisms group of the circle. ArXiv e-prints, Feb 2012. To appear in The Journal of Geometric Mechanics.

  11. Escher J., Kolev B., Wunsch M.:The geometry of a vorticity model equation. Commun. Pure Appl. Anal., 11(4), 1407–1419 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Euler L.P.: Du mouvement de rotation des corps solides autour d’un axe variable. Mémoires de l’académie des sciences de Berlin, 14, 154–193 (1765)

    Google Scholar 

  13. Friedrichs K.O.: The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc., 55, 132–151 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Guieu and C. Roger. L’algèbre et le groupe de Virasoro. Les Publications CRM, Montreal, QC, 2007. Aspects géométriques et algébriques, généralisations. [Geometric and algebraic aspects, generalizations], With an appendix by Vlad Sergiescu.

  15. Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.)7(1), 65– (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kato T., Ponce G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math., 41(7), 891–907 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys., 40(2), 857–868 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. S. G. Krantz. Partial Differential Equations and Complex Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Lecture notes prepared by Estela A. Gavosto and Marco M. Peloso.

  19. Lang S.: Fundamentals of Differential Geometry, volume 191 of Graduate Texts in Mathematics. Springer-Verlag, (1999)

    Book  Google Scholar 

  20. McLachlan R., Zhang X.: Well-posedness of modified Camassa-Holm equations. J. Differential Equations, 246(8), 3241–3259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Michor and D. Mumford. On Euler’s equation and ’EPDiff’. The Journal of Geometric Mechanics, 5(3):319 – 344, sep 2013.

  22. Misiołek G.: Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal., 12(5), 1080–1104 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. B. E. Petersen. Introduction to the Fourier Transform & Pseudodifferential Operators, volume 19 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1983.

  24. M. Taylor. Commutator estimates. Proc. Amer. Math. Soc., 131(5):1501–1507 (electronic), 2003.

  25. M. E. Taylor. Pseudodifferential Operators and Nonlinear PDE, volume 100 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1991.

  26. A. Trouvé and L. Younes. Local geometry of deformable templates. SIAM J. Math. Anal., 37(1):17–59 (electronic), 2005.

  27. Wunsch M.: the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric. J. Nonlinear Math. Phys., 17(1), 7–11 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Escher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escher, J., Kolev, B. Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle. J. Evol. Equ. 14, 949–968 (2014). https://doi.org/10.1007/s00028-014-0245-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0245-3

Mathematics Subject Classification (2010)

Navigation