Skip to main content
Log in

Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Angiogenesis is a key process in the tumoral growth which allows the cancerous tissue to impact on its vasculature in order to improve the nutrient’s supply and the metastatic process. In this paper, we introduce a model for the density of metastasis which takes into account for this feature. It is a two-dimensional structured population equation with a vanishing velocity field and a source term on the boundary. We present here the mathematical analysis of the model, namely the well-posedness of the equation and the asymptotic behavior of the solutions, whose natural regularity led us to investigate some basic properties of the space \({W_{\rm div}(\Omega)=\left\{V\in L^1;\;{\rm div}(GV)\in L^1\right\}}\), where G is the velocity field of the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adimy M., Crauste F.: Un modèle non-linéaire de prolifération cellulaire: extinction des cellules et invariance. C. R. Math. Acad. Sci. Paris 336(7), 559–564 (2003)

    MathSciNet  MATH  Google Scholar 

  • H. T. Banks and F. Kappel. Transformation semigroups and L 1-approximation for size structured population models. Semigroup Forum, 38(2):141–155, 1989. Semigroups and differential operators (Oberwolfach, 1988).

    Google Scholar 

  • Barbolosi D., Benabdallah A., Hubert F., Verga F.: Mathematical and numerical analysis for a model of growing metastatic tumors. Math. Biosci. 218(1), 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bardos C.: Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. École Norm. Sup. 4 3, 185–233 (1970)

    MathSciNet  MATH  Google Scholar 

  • Billy F., Ribba B., Saut O., Morre-Trouilhet H., Colin T., Bresch D., Boissel J-P., Grenier E., Flandrois J-P.: A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260(4), 545–562 (2009)

    Article  Google Scholar 

  • Cessenat M.: Théorèmes de trace L p pour des espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris Sér. I Math. 299(16), 831–834 (1984)

    MathSciNet  MATH  Google Scholar 

  • Cessenat M.: Théorèmes de trace pour des espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris Sér. I Math. 300(3), 89–92 (1985)

    MathSciNet  MATH  Google Scholar 

  • J-P. Demailly. Numerical analysis and differential equations. (Analyse numérique et équations différentielles.) Nouvelle éd. Grenoble: Presses Univ. de Grenoble. 309 p., 1996.

  • A. Devys, T. Goudon, and P. Laffitte. A model describing the growth and the size distribution of multiple metastatic tumors. Discret. and contin. dyn. syst. series B, 12(4), 2009.

  • d’Onofrio A., Gandolfi A.(2004) Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al (1999). Math. Biosci. 191(2):159–184

    Google Scholar 

  • Doumic M.: Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom. 2(3), 121–152 (2007)

    Article  MathSciNet  Google Scholar 

  • J. Droniou. Quelques résultats sur les espaces de sobolev. http://www-gm3.univ-mrs.fr/polys/, 2001.

  • Ebos J.M.L., Lee C.R., Crus-Munoz W., Bjarnason G.A., Christensen J.G.: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232–239 (2009)

    Article  Google Scholar 

  • Echenim N., Monniaux D., Sorine M., Clément F.: Multi-scale modeling of the follicle selection process in the ovary. Math. Biosci., 198(1), 57–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • K-J Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

  • Hahnfeldt P., Panigraphy D., Folkman J., Hlatky L.: Tumor development under angiogenic signaling : a dynamical theory of tumor growth, treatment, response and postvascular dormancy. Cancer Research, 59, 4770–4775 (1999)

    Google Scholar 

  • Iwata K., Kawasaki K., Shigesada N.: A dynamical model for the growth and size distribution of multiple metastatic tumors. J. Theor. Biol., 203, 177–186 (2000)

    Article  Google Scholar 

  • McKendrick A.G.: Applications of mathematics to medical problems. Proc. Edin. Math. Soc., 44, 98–130 (1926)

    Article  Google Scholar 

  • Michel P., Mischler S., Perthame B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9) 84(9), 1235–1260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.

  • B. Perthame and S. K. Tumuluri. Nonlinear renewal equations. In Selected topics in cancer modeling, Model. Simul. Sci. Eng. Technol., pages 65–96. Birkhäuser Boston, Boston, MA, 2008.

  • Ribba B., Saut O., Colin T., Bresch D., Grenier E., Boissel J.P.: A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol., 243(4), 532–541 (2006)

    Article  MathSciNet  Google Scholar 

  • Serrin J., Varberg D.E.: A general chain rule for derivatives and the change of variables formula for the Lebesgue integral. Amer. Math. Monthly, 76, 514–520 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharpe F.R., Lotka F.R.: A problem in age distribution. Phil. Mag. 21, 435–438 (1911)

    Google Scholar 

  • L. Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin, 2007.

  • Tucker S.L., Zimmerman S.O.: A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math., 48(3), 549–591 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • G. F. Webb. Theory of nonlinear age-dependent population dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1985.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benzekry Sébastien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sébastien, B. Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis. J. Evol. Equ. 11, 187–213 (2011). https://doi.org/10.1007/s00028-010-0088-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-010-0088-5

Mathematics Subject Classification (2000)

Keywords

Navigation