Skip to main content
Log in

The instationary Stokes equations in weighted Bessel-potential spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We investigate the solvability of the instationary Stokes equations with fully inhomogeneous data in \({L^r(0,T;H^{\beta,q}_w(\Omega))}\) , where \({H^{\beta,q}_w(\Omega)}\) is a Bessel-potential space with a Muckenhoupt weight w. Depending on the order of this Bessel-potential space we are dealing with strong solutions or with very weak solutions. Whereas in the context of lowest regularity one obtains solvability with respect to inhomogeneous data by dualization, this is more delicate in the case of higher regularity, where one has to introduce some additional time regularity. As a preparation, we introduce a generalization of the Stokes operator that is appropriate to the context of very weak solutions in weighted Bessel-potential spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Academic Press, Amsterdam, 2. edition, (2003)

    MATH  Google Scholar 

  2. H. Amann. Linear and quasilinear parabolic problems. Vol. 1: Abstract linear theory. Monographs in Mathematics. 89, Birkhäuser Verlag, Basel, 1995.

  3. H. Amann. Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York, pages 1–26, 2002.

  4. Bergh J., Löfström J.: Interpolation Spaces. An Introduction. Springer, Berlin, Heidelberg, New York (1976)

    MATH  Google Scholar 

  5. Chua S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41, 1027–1076 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Conway J.: A Course in Functional Analysis. Springer Verlag, New York, 2. edition, (1990)

    MATH  Google Scholar 

  7. Curbera G.P., García-Cuerva J., Martell J.M., Pérez C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203, 256–318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farwig R., Galdi G.P., Sohr H.: Very weak solutions of stationary and instationary Navier–Stokes equations with nonhomogeneous data. Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64, 113–136 (2005)

    MathSciNet  Google Scholar 

  9. Farwig R., Galdi G.P., Sohr H.: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8, 423–444 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farwig R., Kozono H., Sohr H.: Very weak solutions of the Navier–Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Japan 59, 127–150 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farwig R., Sohr H.: Weighted L q-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49, 251–288 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fröhlich A.: The Helmholtz decomposition of weighted L q-spaces for Muckenhoupt weights. Ann. Univ. Ferrara, Nuova Ser., Sez. VII - Sc. Math. XLVI, 11–19 (2000)

    Google Scholar 

  13. Fröhlich A.: Stokes- und Navier–Stokes–Gleichungen in gewichteten Funktionenräumen. Shaker Verlag, Aachen (2001)

    MATH  Google Scholar 

  14. A. Fröhlich. The Stokes operator in weighted L q-spaces II: Weighted resolvent estimates and maximal L p-regularity. Preprint No. 2173, FB Mathematik, TU Darmstadt, 2001, to appear in Math. Ann.

  15. Fröhlich A.: The Stokes operator in weighted L q-spaces I: Weighted estimates for the Stokes resolvent problem in a half space. J. Math. Fluid Mech. 5, 166–199 (2003)

    MATH  MathSciNet  Google Scholar 

  16. A. Fröhlich. Solutions of the Navier-Stokes initial value problem in weighted L q-spaces. Math. Nachr., 269-270:150–166, 2004.

    Google Scholar 

  17. Galdi G.P., Simader C.G., Sohr H.: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in \({W^{-\frac1q,q}}\) . Math. Ann. 331, 41–74 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. García-Cuerva J., Rubio de Francia J.L.: Weighted norm inequalities and related topics. North Holland, Amsterdam (1985)

    MATH  Google Scholar 

  19. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44, Springer Verlag, New York, 1983.

  20. K. Schumacher. A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces. Preprint No. 2510, FB Mathematik, TU Darmstadt, to appear in Chechoslovak. Math. J., 2007.

  21. K. Schumacher. The Navier–Stokes Equations with Low-Regularity Data in Weighted Function Spaces. PhD thesis, TU Darmstadt, FB Mathematik, 2007.

  22. Schumacher K.: The stationary Navier–Stokes equations in weighted Bessel-potential spaces. J. Math. Soc. Japan 61, 1–38 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schumacher K.: Solutions to the equation div uf in weighted Sobolev spaces. Banach Center Publ. 81, 433–440 (2008)

    Article  Google Scholar 

  24. Schumacher K.: Very weak solutions to the Stokes and Stokes resolvent problem in weighted function spaces. Ann. dell’ Univ. di Ferrara 54, 123–144 (2008)

    Article  MathSciNet  Google Scholar 

  25. E. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J, 1993.

  26. M. E. Taylor. Partial Differential Equations III: Nonlinear Equations. Applied Math. Sciences 117, Springer Verlag, Berlin, 1996.

  27. Temam R.: Navier Stokes Equations: Theory and Numerical Analysis. North-Holland Publ. Co, Amsterdam, New York (1977)

    MATH  Google Scholar 

  28. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  29. Weis L.: Operator-valued Fourier multipier theorems and maximal L p -regularity. Math. Ann. 319, 735–758 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zimmermann F.: On vector-valued Fourier multiplier theorems. Studia Mathematica XCIII, 201–222 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Schumacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, K. The instationary Stokes equations in weighted Bessel-potential spaces. J. Evol. Equ. 9, 1–36 (2009). https://doi.org/10.1007/s00028-009-0013-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-009-0013-y

Mathematics Subject Classification (2000)

Keywords

Navigation